infer.py 5.71 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import codecs
import os
import sys
import time

import yaml
import numpy as np
import cv2
import paddle
from paddle.inference import create_predictor, PrecisionType
from paddle.inference import Config as PredictConfig

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../../')))

import paddleseg.transforms as T
from paddleseg.core.infer import reverse_transform
from paddleseg.cvlibs import manager
from paddleseg.utils import TimeAverager

from optic_flow_process import optic_flow_process


class DeployConfig:
    def __init__(self, path, vertical_screen):
        with codecs.open(path, 'r', 'utf-8') as file:
            self.dic = yaml.load(file, Loader=yaml.FullLoader)

            [width, height] = self.dic['Deploy']['transforms'][0]['target_size']
            if vertical_screen and width > height:
                self.dic['Deploy']['transforms'][0][
                    'target_size'] = [height, width]

        self._transforms = self._load_transforms(self.dic['Deploy'][
            'transforms'])
        self._dir = os.path.dirname(path)

    @property
    def transforms(self):
        return self._transforms

    @property
    def model(self):
        return os.path.join(self._dir, self.dic['Deploy']['model'])

    @property
    def params(self):
        return os.path.join(self._dir, self.dic['Deploy']['params'])

    def target_size(self):
        [width, height] = self.dic['Deploy']['transforms'][0]['target_size']
        return [width, height]

    def _load_transforms(self, t_list):
        com = manager.TRANSFORMS
        transforms = []
        for t in t_list:
            ctype = t.pop('type')
            transforms.append(com[ctype](**t))

        return transforms


class Predictor:
    def __init__(self, args):
        self.args = args
        self.cfg = DeployConfig(args.config, args.vertical_screen)
        self.compose = T.Compose(self.cfg.transforms)

        pred_cfg = PredictConfig(self.cfg.model, self.cfg.params)
        pred_cfg.disable_glog_info()
        if self.args.use_gpu:
            pred_cfg.enable_use_gpu(100, 0)

        self.predictor = create_predictor(pred_cfg)
        if self.args.test_speed:
            self.cost_averager = TimeAverager()

        if args.use_optic_flow:

            self.disflow = cv2.DISOpticalFlow_create(
                cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
            width, height = self.cfg.target_size()
            self.prev_gray = np.zeros((height, width), np.uint8)
            self.prev_cfd = np.zeros((height, width), np.float32)
            self.is_first_frame = True

    def run(self, img, bg):
        input_names = self.predictor.get_input_names()
        input_handle = self.predictor.get_input_handle(input_names[0])

        data = self.compose({'img': img})
        input_data = np.array([data['img']])

        input_handle.reshape(input_data.shape)
        input_handle.copy_from_cpu(input_data)
        if self.args.test_speed:
            start = time.time()

        self.predictor.run()

        if self.args.test_speed:
            self.cost_averager.record(time.time() - start)
        output_names = self.predictor.get_output_names()
        output_handle = self.predictor.get_output_handle(output_names[0])
        output = output_handle.copy_to_cpu()

        return self.postprocess(output, img, data, bg)

    def postprocess(self, pred_img, origin_img, data, bg):
        trans_info = data['trans_info']
        score_map = pred_img[0, 1, :, :]

        # post process
        if self.args.use_post_process:
            mask_original = score_map.copy()
            mask_original = (mask_original * 255).astype("uint8")
            _, mask_thr = cv2.threshold(mask_original, 240, 1,
                                        cv2.THRESH_BINARY)
            kernel_erode = cv2.getStructuringElement(cv2.MORPH_CROSS, (5, 5))
            kernel_dilate = cv2.getStructuringElement(cv2.MORPH_CROSS, (25, 25))
            mask_erode = cv2.erode(mask_thr, kernel_erode)
            mask_dilate = cv2.dilate(mask_erode, kernel_dilate)
            score_map *= mask_dilate

        # optical flow
        if self.args.use_optic_flow:
            score_map = 255 * score_map
            cur_gray = cv2.cvtColor(origin_img, cv2.COLOR_BGR2GRAY)
            cur_gray = cv2.resize(cur_gray,
                                  (pred_img.shape[-1], pred_img.shape[-2]))
            optflow_map = optic_flow_process(cur_gray, score_map, self.prev_gray, self.prev_cfd, \
                    self.disflow, self.is_first_frame)
            self.prev_gray = cur_gray.copy()
            self.prev_cfd = optflow_map.copy()
            self.is_first_frame = False
            score_map = optflow_map / 255.

        score_map = score_map[np.newaxis, np.newaxis, ...]
        score_map = reverse_transform(
            paddle.to_tensor(score_map), trans_info, mode='bilinear')
        alpha = np.transpose(score_map.numpy().squeeze(1), [1, 2, 0])

        h, w, _ = origin_img.shape
        bg = cv2.resize(bg, (w, h))
        if bg.ndim == 2:
            bg = bg[..., np.newaxis]

        out = (alpha * origin_img + (1 - alpha) * bg).astype(np.uint8)
        return out