preprocessing.py 23.9 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pickle
import os
import numpy as np
from collections import OrderedDict
from scipy.ndimage.interpolation import map_coordinates
from multiprocessing.pool import Pool
from skimage.transform import resize
from .image_crop import get_case_identifier_from_npz, ImageCropper


def resize_segmentation(segmentation, new_shape, order=3):
    tpe = segmentation.dtype
    unique_labels = np.unique(segmentation)
    assert len(segmentation.shape) == len(
        new_shape
    ), "New shape must have same dimensionality as segmentation, but got {} and {}.".format(
        segmentation.shape, new_shape)
    if order == 0:
        return resize(
            segmentation.astype(float),
            new_shape,
            order,
            mode="edge",
            clip=True,
            anti_aliasing=False).astype(tpe)
    else:
        reshaped = np.zeros(new_shape, dtype=segmentation.dtype)

        for i, c in enumerate(unique_labels):
            mask = segmentation == c
            reshaped_multihot = resize(
                mask.astype(float),
                new_shape,
                order,
                mode="edge",
                clip=True,
                anti_aliasing=False)
            reshaped[reshaped_multihot >= 0.5] = c
        return reshaped


def get_do_separate_z(spacing, anisotropy_threshold=3):
    do_separate_z = (np.max(spacing) / np.min(spacing)) > anisotropy_threshold
    return do_separate_z


def get_lowres_axis(new_spacing):
    axis = np.where(max(new_spacing) / np.array(new_spacing) == 1)[0]
    return axis


def resample_patient(data,
                     seg,
                     original_spacing,
                     target_spacing,
                     order_data=3,
                     order_seg=0,
                     force_separate_z=False,
                     order_z_data=0,
                     order_z_seg=0,
                     separate_z_anisotropy_threshold=3):
    assert not ((data is None) and (seg is None))
    if data is not None:
        assert len(data.shape) == 4, "Data geometry must be c x y z."
    if seg is not None:
        assert len(seg.shape) == 4, "Segmentation geometry must be c x y z."

    if data is not None:
        shape = np.array(data[0].shape)
    else:
        shape = np.array(seg[0].shape)
    new_shape = np.round(
        ((np.array(original_spacing) / np.array(target_spacing)).astype(float) *
         shape)).astype(int)

    if force_separate_z is not None:
        do_separate_z = force_separate_z
        if force_separate_z:
            axis = get_lowres_axis(original_spacing)
        else:
            axis = None
    else:
        if get_do_separate_z(original_spacing, separate_z_anisotropy_threshold):
            do_separate_z = True
            axis = get_lowres_axis(original_spacing)
        elif get_do_separate_z(target_spacing, separate_z_anisotropy_threshold):
            do_separate_z = True
            axis = get_lowres_axis(target_spacing)
        else:
            do_separate_z = False
            axis = None

    if axis is not None:
        if len(axis) == 3:
            do_separate_z = False
        elif len(axis) == 2:
            do_separate_z = False
        else:
            pass

    if data is not None:
        data_reshaped = resample_data_or_seg(
            data,
            new_shape,
            False,
            axis,
            order_data,
            do_separate_z,
            order_z=order_z_data)
    else:
        data_reshaped = None
    if seg is not None:
        seg_reshaped = resample_data_or_seg(
            seg,
            new_shape,
            True,
            axis,
            order_seg,
            do_separate_z,
            order_z=order_z_seg)
    else:
        seg_reshaped = None
    return data_reshaped, seg_reshaped


def resample_data_or_seg(data,
                         new_shape,
                         is_seg,
                         axis=None,
                         order=3,
                         do_separate_z=False,
                         order_z=0):
    assert len(data.shape) == 4, "Data geometry must be (c, x, y, z)"
    if is_seg:
        resize_fn = resize_segmentation
        kwargs = OrderedDict()
    else:
        resize_fn = resize
        kwargs = {'mode': 'edge', 'anti_aliasing': False}
    dtype_data = data.dtype
    shape = np.array(data[0].shape)
    new_shape = np.array(new_shape)
    if np.any(shape != new_shape):
        data = data.astype(float)
        if do_separate_z:
            print("separate z, order in z is {} order inplane is {}.".format(
                order_z, order))
            assert len(
                axis
            ) == 1, "Only one anisotropic axis supported, but got {} axis.".format(
                len(axis))
            axis = axis[0]
            if axis == 0:
                new_shape_2d = new_shape[1:]
            elif axis == 1:
                new_shape_2d = new_shape[[0, 2]]
            else:
                new_shape_2d = new_shape[:-1]

            reshaped_final_data = []
            for c in range(data.shape[0]):
                reshaped_data = []
                for slice_id in range(shape[axis]):
                    if axis == 0:
                        reshaped_data.append(
                            resize_fn(data[c, slice_id], new_shape_2d, order, **
                                      kwargs))
                    elif axis == 1:
                        reshaped_data.append(
                            resize_fn(data[c, :, slice_id], new_shape_2d, order,
                                      **kwargs))
                    else:
                        reshaped_data.append(
                            resize_fn(data[c, :, :, slice_id], new_shape_2d,
                                      order, **kwargs))
                reshaped_data = np.stack(reshaped_data, axis)
                if shape[axis] != new_shape[axis]:

                    rows, cols, dim = new_shape[0], new_shape[1], new_shape[2]
                    orig_rows, orig_cols, orig_dim = reshaped_data.shape

                    row_scale = float(orig_rows) / rows
                    col_scale = float(orig_cols) / cols
                    dim_scale = float(orig_dim) / dim

                    map_rows, map_cols, map_dims = np.mgrid[:rows, :cols, :dim]
                    map_rows = row_scale * (map_rows + 0.5) - 0.5
                    map_cols = col_scale * (map_cols + 0.5) - 0.5
                    map_dims = dim_scale * (map_dims + 0.5) - 0.5

                    coord_map = np.array([map_rows, map_cols, map_dims])
                    if not is_seg or order_z == 0:
                        reshaped_final_data.append(
                            map_coordinates(
                                reshaped_data,
                                coord_map,
                                order=order_z,
                                mode='nearest')[None])
                    else:
                        unique_labels = np.unique(reshaped_data)
                        reshaped = np.zeros(new_shape, dtype=dtype_data)

                        for i, cl in enumerate(unique_labels):
                            reshaped_multihot = np.round(
                                map_coordinates(
                                    (reshaped_data == cl).astype(float),
                                    coord_map,
                                    order=order_z,
                                    mode='nearest'))
                            reshaped[reshaped_multihot > 0.5] = cl
                        reshaped_final_data.append(reshaped[None])
                else:
                    reshaped_final_data.append(reshaped_data[None])
            reshaped_final_data = np.vstack(reshaped_final_data)
        else:
            print("no separate z, order {}.".format(order))
            reshaped = []
            for c in range(data.shape[0]):
                reshaped.append(
                    resize_fn(data[c], new_shape, order, **kwargs)[None])
            reshaped_final_data = np.vstack(reshaped)
        return reshaped_final_data.astype(dtype_data)
    else:
        print("No resampling necessary.")
        return data


class GenericPreprocessor:
    def __init__(self,
                 normalization_scheme_per_modality,
                 use_nonzero_mask,
                 transpose_forward: (tuple, list),
                 intensityproperties=None):
        self.transpose_forward = transpose_forward
        self.intensityproperties = intensityproperties
        self.normalization_scheme_per_modality = normalization_scheme_per_modality
        self.use_nonzero_mask = use_nonzero_mask

        self.resample_separate_z_anisotropy_threshold = 3

    @staticmethod
    def load_cropped(cropped_output_dir, case_identifier):
        all_data = np.load(
            os.path.join(cropped_output_dir, "%s.npz" % case_identifier))[
                'data']
        data = all_data[:-1].astype(np.float32)
        seg = all_data[-1:]
        with open(
                os.path.join(cropped_output_dir, "%s.pkl" % case_identifier),
                'rb') as f:
            properties = pickle.load(f)
        return data, seg, properties

    def resample_and_normalize(self,
                               data,
                               target_spacing,
                               properties,
                               seg=None,
                               force_separate_z=None):
        original_spacing_transposed = np.array(properties["original_spacing"])[
            self.transpose_forward]
        before = {
            'spacing': properties["original_spacing"],
            'spacing_transposed': original_spacing_transposed,
            'data.shape (data is transposed)': data.shape
        }
        data[np.isnan(data)] = 0

        data, seg = resample_patient(
            data,
            seg,
            np.array(original_spacing_transposed),
            target_spacing,
            3,
            1,
            force_separate_z=force_separate_z,
            order_z_data=0,
            order_z_seg=0,
            separate_z_anisotropy_threshold=self.
            resample_separate_z_anisotropy_threshold)
        after = {
            'spacing': target_spacing,
            'data.shape (data is resampled)': data.shape
        }
        print("Resample before: {}".format(before))
        print("Resample after: {}: ".format(after))

        if seg is not None:
            seg[seg < -1] = 0

        properties["size_after_resampling"] = data[0].shape
        properties["spacing_after_resampling"] = target_spacing
        use_nonzero_mask = self.use_nonzero_mask

        assert len(self.normalization_scheme_per_modality) == len(
            data
        ), "normalization_scheme_per_modality must have as many entries as data has modalities in GenericPreprocessor."
        assert len(self.use_nonzero_mask) == len(
            data
        ), "use_nonzero_mask must have as many entries as data has modalities in GenericPreprocessor."
        print("Normalize...")
        for c in range(len(data)):
            scheme = self.normalization_scheme_per_modality[c]
            if scheme == "CT":
                assert self.intensityproperties is not None, "CT dataset must has intensityproperties, but got None. Please check your DataAnalyzer."
                mean_intensity = self.intensityproperties[c]['mean']
                std_intensity = self.intensityproperties[c]['sd']
                lower_bound = self.intensityproperties[c]['percentile_00_5']
                upper_bound = self.intensityproperties[c]['percentile_99_5']
                data[c] = np.clip(data[c], lower_bound, upper_bound)
                data[c] = (data[c] - mean_intensity) / std_intensity
                if use_nonzero_mask[c]:
                    data[c][seg[-1] < 0] = 0
            elif scheme == "CT2":
                assert self.intensityproperties is not None, "CT dataset must has intensityproperties, but got None. Please check your DataAnalyzer."
                lower_bound = self.intensityproperties[c]['percentile_00_5']
                upper_bound = self.intensityproperties[c]['percentile_99_5']
                mask = (data[c] > lower_bound) & (data[c] < upper_bound)
                data[c] = np.clip(data[c], lower_bound, upper_bound)
                mean_intensity = data[c][mask].mean()
                std_intensity = data[c][mask].std()
                data[c] = (data[c] - mean_intensity) / std_intensity
                if use_nonzero_mask[c]:
                    data[c][seg[-1] < 0] = 0
            elif scheme == 'noNorm':
                pass
            else:
                if use_nonzero_mask[c]:
                    mask = seg[-1] >= 0
                    data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (
                        data[c][mask].std() + 1e-8)
                    data[c][mask == 0] = 0
                else:
                    mn = data[c].mean()
                    std = data[c].std()
                    data[c] = (data[c] - mn) / (std + 1e-8)
        print("Normalize Done.")
        return data, seg, properties

    def preprocess_test_case(self,
                             data_files,
                             target_spacing,
                             seg_file=None,
                             force_separate_z=None):
        data, seg, properties = ImageCropper.crop_from_list_of_files(data_files,
                                                                     seg_file)

        data = data.transpose((0, * [i + 1 for i in self.transpose_forward]))
        seg = seg.transpose((0, * [i + 1 for i in self.transpose_forward]))

        data, seg, properties = self.resample_and_normalize(
            data,
            target_spacing,
            properties,
            seg,
            force_separate_z=force_separate_z)
        return data.astype(np.float32), seg, properties

    def _run_internal(self, target_spacing, case_identifier,
                      output_folder_stage, cropped_output_dir, force_separate_z,
                      all_classes):
        data, seg, properties = self.load_cropped(cropped_output_dir,
                                                  case_identifier)

        data = data.transpose((0, * [i + 1 for i in self.transpose_forward]))
        seg = seg.transpose((0, * [i + 1 for i in self.transpose_forward]))

        data, seg, properties = self.resample_and_normalize(
            data, target_spacing, properties, seg, force_separate_z)

        all_data = np.vstack((data, seg)).astype(np.float32)

        num_samples = 10000
        min_percent_coverage = 0.01
        rndst = np.random.RandomState(1234)
        class_locs = {}
        for c in all_classes:
            all_locs = np.argwhere(all_data[-1] == c)
            if len(all_locs) == 0:
                class_locs[c] = []
                continue
            target_num_samples = min(num_samples, len(all_locs))
            target_num_samples = max(
                target_num_samples,
                int(np.ceil(len(all_locs) * min_percent_coverage)))

            selected = all_locs[rndst.choice(
                len(all_locs), target_num_samples, replace=False)]
            class_locs[c] = selected
            print(c, target_num_samples)
        properties['class_locations'] = class_locs

        print("saving: ",
              os.path.join(output_folder_stage, "%s.npz" % case_identifier))
        np.savez_compressed(
            os.path.join(output_folder_stage, "%s.npz" % case_identifier),
            data=all_data.astype(np.float32))
        with open(
                os.path.join(output_folder_stage, "%s.pkl" % case_identifier),
                'wb') as f:
            pickle.dump(properties, f)

    def run(self,
            target_spacings,
            input_folder_with_cropped_npz,
            output_folder,
            data_identifier,
            num_threads=1,
            force_separate_z=None):
        print("Initializing to run preprocessing")
        print("npz folder:", input_folder_with_cropped_npz)
        print("output_folder:", output_folder)
        list_of_cropped_npz_files = [
            os.path.join(input_folder_with_cropped_npz, file_name)
            for file_name in os.listdir(input_folder_with_cropped_npz)
            if os.path.isfile(
                os.path.join(input_folder_with_cropped_npz, file_name)) and
            file_name.endswith('.npz')
        ]
        list_of_cropped_npz_files.sort()
        os.makedirs(output_folder, exist_ok=True)
        num_stages = len(target_spacings)
        if not isinstance(num_threads, (list, tuple, np.ndarray)):
            num_threads = [num_threads] * num_stages

        assert len(num_threads) == num_stages
        with open(
                os.path.join(input_folder_with_cropped_npz,
                             'dataset_properties.pkl'), 'rb') as f:
            all_classes = pickle.load(f)['all_classes']

        for i in range(num_stages):
            all_args = []
            output_folder_stage = os.path.join(output_folder,
                                               data_identifier + "_stage%d" % i)
            os.makedirs(output_folder_stage, exist_ok=True)
            spacing = target_spacings[i]
            for j, case in enumerate(list_of_cropped_npz_files):
                case_identifier = get_case_identifier_from_npz(case)
                args = spacing, case_identifier, output_folder_stage, input_folder_with_cropped_npz, force_separate_z, all_classes
                all_args.append(args)
            p = Pool(num_threads[i])
            p.starmap(self._run_internal, all_args)
            p.close()
            p.join()


class PreprocessorFor2D(GenericPreprocessor):
    def __init__(self,
                 normalization_scheme_per_modality,
                 use_nonzero_mask,
                 transpose_forward: (tuple, list),
                 intensityproperties=None):
        super(PreprocessorFor2D, self).__init__(
            normalization_scheme_per_modality, use_nonzero_mask,
            transpose_forward, intensityproperties)

    def run(self,
            target_spacings,
            input_folder_with_cropped_npz,
            output_folder,
            data_identifier,
            num_threads=1,
            force_separate_z=None):
        print("Initializing to run preprocessing")
        print("npz folder:", input_folder_with_cropped_npz)
        print("output_folder:", output_folder)
        list_of_cropped_npz_files = [
            os.path.join(input_folder_with_cropped_npz, file_name)
            for file_name in os.listdir(input_folder_with_cropped_npz)
            if os.path.isfile(
                os.path.join(input_folder_with_cropped_npz, file_name)) and
            file_name.endswith('.npz')
        ]
        list_of_cropped_npz_files.sort()
        assert len(list_of_cropped_npz_files) != 0, "set list of files first"
        os.makedirs(output_folder, exist_ok=True)
        all_args = []
        num_stages = len(target_spacings)

        with open(
                os.path.join(input_folder_with_cropped_npz,
                             'dataset_properties.pkl'), 'rb') as f:
            all_classes = pickle.load(f)['all_classes']

        for i in range(num_stages):
            output_folder_stage = os.path.join(output_folder,
                                               data_identifier + "_stage%d" % i)
            os.makedirs(output_folder_stage, exist_ok=True)
            spacing = target_spacings[i]
            for j, case in enumerate(list_of_cropped_npz_files):
                case_identifier = get_case_identifier_from_npz(case)
                args = spacing, case_identifier, output_folder_stage, input_folder_with_cropped_npz, force_separate_z, all_classes
                all_args.append(args)
        p = Pool(num_threads)
        p.starmap(self._run_internal, all_args)
        p.close()
        p.join()

    def resample_and_normalize(self,
                               data,
                               target_spacing,
                               properties,
                               seg=None,
                               force_separate_z=None):
        original_spacing_transposed = np.array(properties["original_spacing"])[
            self.transpose_forward]
        before = {
            'spacing': properties["original_spacing"],
            'spacing_transposed': original_spacing_transposed,
            'data.shape (data is transposed)': data.shape
        }
        target_spacing[0] = original_spacing_transposed[0]
        data, seg = resample_patient(
            data,
            seg,
            np.array(original_spacing_transposed),
            target_spacing,
            3,
            1,
            force_separate_z=force_separate_z,
            order_z_data=0,
            order_z_seg=0,
            separate_z_anisotropy_threshold=self.
            resample_separate_z_anisotropy_threshold)
        after = {
            'spacing': target_spacing,
            'data.shape (data is resampled)': data.shape
        }
        print("Resample before: {}".format(before))
        print("Resample after: {}: ".format(after))

        if seg is not None:
            seg[seg < -1] = 0

        properties["size_after_resampling"] = data[0].shape
        properties["spacing_after_resampling"] = target_spacing
        use_nonzero_mask = self.use_nonzero_mask

        assert len(self.normalization_scheme_per_modality) == len(
            data
        ), "normalization_scheme_per_modality must have as many entries as data has modalities in GenericPreprocessor."
        assert len(self.use_nonzero_mask) == len(
            data
        ), "use_nonzero_mask must have as many entries as data has modalities in GenericPreprocessor."
        print("Normalize...")
        for c in range(len(data)):
            scheme = self.normalization_scheme_per_modality[c]
            if scheme == "CT":
                assert self.intensityproperties is not None, "CT dataset must has intensityproperties, but got None. Please check your DataAnalyzer."
                mean_intensity = self.intensityproperties[c]['mean']
                std_intensity = self.intensityproperties[c]['sd']
                lower_bound = self.intensityproperties[c]['percentile_00_5']
                upper_bound = self.intensityproperties[c]['percentile_99_5']
                data[c] = np.clip(data[c], lower_bound, upper_bound)
                data[c] = (data[c] - mean_intensity) / std_intensity
                if use_nonzero_mask[c]:
                    data[c][seg[-1] < 0] = 0
            elif scheme == "CT2":
                assert self.intensityproperties is not None, "CT dataset must has intensityproperties, but got None. Please check your DataAnalyzer."
                lower_bound = self.intensityproperties[c]['percentile_00_5']
                upper_bound = self.intensityproperties[c]['percentile_99_5']
                mask = (data[c] > lower_bound) & (data[c] < upper_bound)
                data[c] = np.clip(data[c], lower_bound, upper_bound)
                mn = data[c][mask].mean()
                sd = data[c][mask].std()
                data[c] = (data[c] - mn) / sd
                if use_nonzero_mask[c]:
                    data[c][seg[-1] < 0] = 0
            elif scheme == 'noNorm':
                pass
            else:
                if use_nonzero_mask[c]:
                    mask = seg[-1] >= 0
                else:
                    mask = np.ones(seg.shape[1:], dtype=bool)
                data[c][mask] = (data[c][mask] - data[c][mask].mean()) / (
                    data[c][mask].std() + 1e-8)
                data[c][mask == 0] = 0
        print("Normalization done")
        return data, seg, properties