experiment_utils.py 6.52 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from copy import deepcopy


def pad_shape(shape, must_be_divisible_by):
    if not isinstance(must_be_divisible_by, (tuple, list, np.ndarray)):
        must_be_divisible_by = [must_be_divisible_by] * len(shape)
    else:
        assert len(must_be_divisible_by) == len(shape)

    new_shape = [
        shape[i] + must_be_divisible_by[i] - shape[i] % must_be_divisible_by[i]
        for i in range(len(shape))
    ]

    for i in range(len(shape)):
        if shape[i] % must_be_divisible_by[i] == 0:
            new_shape[i] -= must_be_divisible_by[i]
    new_shape = np.array(new_shape).astype(int)
    return new_shape


def get_shape_must_be_divisible_by(net_numpool_per_axis):
    return 2**np.array(net_numpool_per_axis)


def get_network_numpool(patch_size, maxpool_cap=999, min_feature_map_size=4):
    network_numpool_per_axis = np.floor(
        [np.log(i / min_feature_map_size) / np.log(2)
         for i in patch_size]).astype(int)
    network_numpool_per_axis = [
        min(i, maxpool_cap) for i in network_numpool_per_axis
    ]
    return network_numpool_per_axis


def get_pool_and_conv_props_poolLateV2(patch_size, min_feature_map_size,
                                       max_numpool, spacing):
    initial_spacing = deepcopy(spacing)
    reach = max(initial_spacing)
    dim = len(patch_size)

    num_pool_per_axis = get_network_numpool(patch_size, max_numpool,
                                            min_feature_map_size)

    net_num_pool_op_kernel_sizes = []
    net_conv_kernel_sizes = []
    net_numpool = max(num_pool_per_axis)

    current_spacing = spacing
    for p in range(net_numpool):
        reached = [current_spacing[i] / reach > 0.5 for i in range(dim)]
        pool = [
            2 if num_pool_per_axis[i] + p >= net_numpool else 1
            for i in range(dim)
        ]
        if all(reached):
            conv = [3] * dim
        else:
            conv = [3 if not reached[i] else 1 for i in range(dim)]
        net_num_pool_op_kernel_sizes.append(pool)
        net_conv_kernel_sizes.append(conv)
        current_spacing = [i * j for i, j in zip(current_spacing, pool)]

    net_conv_kernel_sizes.append([3] * dim)

    must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis)
    patch_size = pad_shape(patch_size, must_be_divisible_by)

    return num_pool_per_axis, net_num_pool_op_kernel_sizes, net_conv_kernel_sizes, patch_size, must_be_divisible_by


def get_pool_and_conv_props(spacing, patch_size, min_feature_map_size,
                            max_numpool):
    dim = len(spacing)
    current_spacing = deepcopy(list(spacing))
    current_size = deepcopy(list(patch_size))

    pool_op_kernel_sizes = []
    conv_kernel_sizes = []

    num_pool_per_axis = [0] * dim

    while True:
        min_spacing = min(current_spacing)
        valid_axes_for_pool = [
            i for i in range(dim) if current_spacing[i] / min_spacing < 2
        ]
        axes = []
        for a in range(dim):
            my_spacing = current_spacing[a]
            partners = [
                i for i in range(dim)
                if current_spacing[i] / my_spacing < 2 and my_spacing /
                current_spacing[i] < 2
            ]
            if len(partners) > len(axes):
                axes = partners
        conv_kernel_size = [3 if i in axes else 1 for i in range(dim)]

        valid_axes_for_pool = [
            i for i in valid_axes_for_pool
            if current_size[i] >= 2 * min_feature_map_size
        ]

        valid_axes_for_pool = [
            i for i in valid_axes_for_pool if num_pool_per_axis[i] < max_numpool
        ]

        if len(valid_axes_for_pool) == 0:
            break

        other_axes = [i for i in range(dim) if i not in valid_axes_for_pool]

        pool_kernel_sizes = [0] * dim
        for v in valid_axes_for_pool:
            pool_kernel_sizes[v] = 2
            num_pool_per_axis[v] += 1
            current_spacing[v] *= 2
            current_size[v] = np.ceil(current_size[v] / 2)
        for nv in other_axes:
            pool_kernel_sizes[nv] = 1

        pool_op_kernel_sizes.append(pool_kernel_sizes)
        conv_kernel_sizes.append(conv_kernel_size)

    must_be_divisible_by = get_shape_must_be_divisible_by(num_pool_per_axis)
    patch_size = pad_shape(patch_size, must_be_divisible_by)

    conv_kernel_sizes.append([3] * dim)
    return num_pool_per_axis, pool_op_kernel_sizes, conv_kernel_sizes, patch_size, must_be_divisible_by


def compute_approx_vram_consumption(patch_size,
                                    num_pool_per_axis,
                                    base_num_features,
                                    max_num_features,
                                    num_modalities,
                                    num_classes,
                                    pool_op_kernel_sizes,
                                    deep_supervision=False,
                                    conv_per_stage=2):
    if not isinstance(num_pool_per_axis, np.ndarray):
        num_pool_per_axis = np.array(num_pool_per_axis)

    npool = len(pool_op_kernel_sizes)

    map_size = np.array(patch_size)
    tmp = np.int64((conv_per_stage * 2 + 1) * np.prod(
        map_size, dtype=np.int64) * base_num_features + num_modalities *
                   np.prod(
                       map_size, dtype=np.int64) + num_classes * np.prod(
                           map_size, dtype=np.int64))

    num_feat = base_num_features

    for p in range(npool):
        for pi in range(len(num_pool_per_axis)):
            map_size[pi] /= pool_op_kernel_sizes[p][pi]
        num_feat = min(num_feat * 2, max_num_features)
        num_blocks = (conv_per_stage * 2 + 1) if p < (
            npool - 1
        ) else conv_per_stage  # conv_per_stage + conv_per_stage for the convs of encode/decode and 1 for transposed conv
        tmp += num_blocks * np.prod(map_size, dtype=np.int64) * num_feat
        if deep_supervision and p < (npool - 2):
            tmp += np.prod(map_size, dtype=np.int64) * num_classes
    return tmp