dataset_analyzer.py 7.79 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import pickle
import numpy as np
from skimage.morphology import label
from collections import OrderedDict
from multiprocessing import Pool


class DatasetAnalyzer:
    def __init__(self,
                 folder_with_cropped_data,
                 overwrite=True,
                 dataset_property_pkl="dataset_properties.pkl",
                 data_json="dataset.json",
                 intensityproperties_file="intensityproperties.pkl",
                 num_processes=8):
        self.overwrite = overwrite
        self.num_processes = num_processes
        self.folder_with_cropped_data = folder_with_cropped_data
        self.dataset_property_pkl = os.path.join(folder_with_cropped_data,
                                                 dataset_property_pkl)
        self.data_json = os.path.join(self.folder_with_cropped_data, data_json)
        assert os.path.isfile(
            self.data_json
        ), "{} needs to be in {} but not found. Please ensure your folder including cropped data.".format(
            data_json, folder_with_cropped_data)
        self.intensityproperties_file = os.path.join(
            self.folder_with_cropped_data, intensityproperties_file)

        self.sizes = self.spacings = None
        self.patient_identifiers = self.get_patient_identifiers_from_cropped_files(
            self.folder_with_cropped_data)

    def get_patient_identifiers_from_cropped_files(self, folder):
        file_list = []
        for file_name in os.listdir(folder):
            if os.path.isfile(os.path.join(
                    folder, file_name)) and file_name.endswith(".npz"):
                file_list.append(os.path.join(folder, file_name))
        return [i.split("/")[-1].split('.')[0] for i in file_list]

    def load_properties_of_cropped(self, case_identifier):
        with open(
                os.path.join(self.folder_with_cropped_data,
                             "%s.pkl" % case_identifier), 'rb') as f:
            properties = pickle.load(f)
        return properties

    def get_classes(self):
        with open(self.data_json, 'rb') as f:
            dataset_json = json.load(f)
        return dataset_json['labels']

    def get_sizes_and_spacings_after_cropping(self):
        sizes = []
        spacings = []
        for c in self.patient_identifiers:
            properties = self.load_properties_of_cropped(c)
            sizes.append(properties["size_after_cropping"])
            spacings.append(properties["original_spacing"])
        return sizes, spacings

    def get_modalities(self):
        with open(self.data_json, 'rb') as f:
            dataset_json = json.load(f)
        modalities = dataset_json["modality"]
        modalities = {int(k): modalities[k] for k in modalities.keys()}
        return modalities

    def get_size_reduction_by_cropping(self):
        size_reduction = OrderedDict()
        for p in self.patient_identifiers:
            props = self.load_properties_of_cropped(p)
            shape_before_crop = props["original_size_of_raw_data"]
            shape_after_crop = props['size_after_cropping']
            size_red = np.prod(shape_after_crop) / np.prod(shape_before_crop)
            size_reduction[p] = size_red
        return size_reduction

    def _get_voxels_in_foreground(self, patient_identifier, modality_id):
        all_data = np.load(
            os.path.join(self.folder_with_cropped_data, patient_identifier) +
            ".npz")['data']
        modality = all_data[modality_id]
        mask = all_data[-1] > 0
        voxels = list(modality[mask][::10])
        return voxels

    def _compute_stats(self, voxels):
        if len(voxels) == 0:
            return np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan
        median = np.median(voxels)
        mean = np.mean(voxels)
        sd = np.std(voxels)
        mn = np.min(voxels)
        mx = np.max(voxels)
        percentile_99_5 = np.percentile(voxels, 99.5)
        percentile_00_5 = np.percentile(voxels, 00.5)
        return median, mean, sd, mn, mx, percentile_99_5, percentile_00_5

    def collect_intensity_properties(self, num_modalities):
        if self.overwrite or not os.path.isfile(self.intensityproperties_file):
            p = Pool(self.num_processes)

            results = OrderedDict()
            for mod_id in range(num_modalities):
                results[mod_id] = OrderedDict()
                voxels = p.starmap(self._get_voxels_in_foreground,
                                   zip(self.patient_identifiers, [mod_id] *
                                       len(self.patient_identifiers)))
                all_voxels = []
                for voxel in voxels:
                    all_voxels += voxel

                median, mean, sd, mn, mx, percentile_99_5, percentile_00_5 = self._compute_stats(
                    all_voxels)
                local_props = p.map(self._compute_stats, voxels)
                props_per_case = OrderedDict()
                for i, pat in enumerate(self.patient_identifiers):
                    props_per_case[pat] = OrderedDict()
                    props_per_case[pat]['median'] = local_props[i][0]
                    props_per_case[pat]['mean'] = local_props[i][1]
                    props_per_case[pat]['sd'] = local_props[i][2]
                    props_per_case[pat]['mn'] = local_props[i][3]
                    props_per_case[pat]['mx'] = local_props[i][4]
                    props_per_case[pat]['percentile_99_5'] = local_props[i][5]
                    props_per_case[pat]['percentile_00_5'] = local_props[i][6]

                results[mod_id]['local_props'] = props_per_case
                results[mod_id]['median'] = median
                results[mod_id]['mean'] = mean
                results[mod_id]['sd'] = sd
                results[mod_id]['mn'] = mn
                results[mod_id]['mx'] = mx
                results[mod_id]['percentile_99_5'] = percentile_99_5
                results[mod_id]['percentile_00_5'] = percentile_00_5

            p.close()
            p.join()
            with open(self.intensityproperties_file, 'wb') as f:
                pickle.dump(results, f)
        else:
            with open(self.intensityproperties_file, 'rb') as f:
                results = pickle.load(f)
        return results

    def analyze_dataset(self, collect_intensityproperties=True):
        sizes, spacings = self.get_sizes_and_spacings_after_cropping()

        classes = self.get_classes()
        all_classes = [int(i) for i in classes.keys() if int(i) > 0]

        modalities = self.get_modalities()
        if collect_intensityproperties:
            intensityproperties = self.collect_intensity_properties(
                len(modalities))
        else:
            intensityproperties = None

        size_reductions = self.get_size_reduction_by_cropping()
        dataset_properties = {}
        dataset_properties['all_sizes'] = sizes
        dataset_properties['all_spacings'] = spacings
        dataset_properties['all_classes'] = all_classes
        dataset_properties['modalities'] = modalities
        dataset_properties['intensityproperties'] = intensityproperties
        dataset_properties['size_reductions'] = size_reductions

        with open(self.dataset_property_pkl, 'wb') as f:
            pickle.dump(dataset_properties, f)
        return dataset_properties