postprocessing.py 14.7 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Implementation of this model is borrowed and modified
# (from torch to paddle) from here:
# https://github.com/MIC-DKFZ/nnUNet

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import shutil
import json
import numpy as np
import SimpleITK as sitk
from multiprocessing.pool import Pool
from scipy.ndimage import label
from copy import deepcopy

from .evaluator import aggregate_scores


def copy_geometry(image: sitk.Image, ref: sitk.Image):
    image.SetOrigin(ref.GetOrigin())
    image.SetDirection(ref.GetDirection())
    image.SetSpacing(ref.GetSpacing())
    return image


def remove_all_but_the_largest_connected_component(
        image: np.ndarray,
        for_which_classes: list,
        volume_per_voxel: float,
        minimum_valid_object_size: dict=None):
    if for_which_classes is None:
        for_which_classes = np.unique(image)
        for_which_classes = for_which_classes[for_which_classes > 0]

    assert 0 not in for_which_classes, "cannot remove background"
    largest_removed = {}
    kept_size = {}
    for c in for_which_classes:
        if isinstance(c, (list, tuple)):
            c = tuple(c)
            mask = np.zeros_like(image, dtype=bool)
            for cl in c:
                mask[image == cl] = True
        else:
            mask = image == c
        lmap, num_objects = label(mask.astype(int))
        object_sizes = {}
        for object_id in range(1, num_objects + 1):
            object_sizes[object_id] = (
                lmap == object_id).sum() * volume_per_voxel

        largest_removed[c] = None
        kept_size[c] = None
        if num_objects > 0:
            maximum_size = max(object_sizes.values())
            kept_size[c] = maximum_size

            for object_id in range(1, num_objects + 1):
                if object_sizes[object_id] != maximum_size:
                    remove = True
                    if minimum_valid_object_size is not None:
                        remove = object_sizes[
                            object_id] < minimum_valid_object_size[c]
                    if remove:
                        image[(lmap == object_id) & mask] = 0
                        if largest_removed[c] is None:
                            largest_removed[c] = object_sizes[object_id]
                        else:
                            largest_removed[c] = max(largest_removed[c],
                                                     object_sizes[object_id])
    return image, largest_removed, kept_size


def load_remove_save(input_file: str,
                     output_file: str,
                     for_which_classes: list,
                     minimum_valid_object_size: dict=None):
    img_in = sitk.ReadImage(input_file)
    img_npy = sitk.GetArrayFromImage(img_in)
    volume_per_voxel = float(np.prod(img_in.GetSpacing(), dtype=np.float64))
    image, largest_removed, kept_size = remove_all_but_the_largest_connected_component(
        img_npy, for_which_classes, volume_per_voxel, minimum_valid_object_size)
    img_out_itk = sitk.GetImageFromArray(image)
    img_out_itk = copy_geometry(img_out_itk, img_in)
    sitk.WriteImage(img_out_itk, output_file)
    return largest_removed, kept_size


def determine_postprocessing(base,
                             gt_labels_folder,
                             raw_subfolder_name="validation_raw",
                             temp_folder="temp",
                             final_subf_name="validation_final",
                             processes=2,
                             dice_threshold=0,
                             debug=False,
                             advanced_postprocessing=False,
                             pp_filename="postprocessing.json"):

    classes = [
        int(i)
        for i in load_json(
            os.path.join(base, raw_subfolder_name, "summary.json"))['results'][
                'mean'].keys() if int(i) != 0
    ]

    folder_all_classes_as_fg = os.path.join(base, temp_folder + "_allClasses")
    folder_per_class = os.path.join(base, temp_folder + "_perClass")

    if os.path.isdir(folder_all_classes_as_fg):
        shutil.rmtree(folder_all_classes_as_fg)
    if os.path.isdir(folder_per_class):
        shutil.rmtree(folder_per_class)

    p = Pool(processes)
    assert os.path.isfile(
        os.path.join(base, raw_subfolder_name, "summary.json")
    ), "{} does not contain a summary.json.".format(
        os.path.join(base, raw_subfolder_name))

    fnames = []
    for f_name in os.listdir(os.path.join(base, raw_subfolder_name)):
        if os.path.isfile(os.path.join(base, raw_subfolder_name,
                                       f_name)) and f_name.endswith('.nii.gz'):
            fnames.append(f_name)

    os.makedirs(folder_all_classes_as_fg, exist_ok=True)
    os.makedirs(folder_per_class, exist_ok=True)
    os.makedirs(os.path.join(base, final_subf_name), exist_ok=True)

    pp_results = {}
    pp_results['dc_per_class_raw'] = {}
    pp_results['dc_per_class_pp_all'] = {}
    pp_results['dc_per_class_pp_per_class'] = {}
    pp_results['for_which_classes'] = []
    pp_results['min_valid_object_sizes'] = {}

    validation_result_raw = load_json(
        os.path.join(base, raw_subfolder_name, "summary.json"))['results']
    pp_results['num_samples'] = len(validation_result_raw['all'])
    validation_result_raw = validation_result_raw['mean']

    if advanced_postprocessing:
        results = []
        for f in fnames:
            predicted_segmentation = os.path.join(base, raw_subfolder_name, f)
            output_file = os.path.join(folder_all_classes_as_fg, f)
            results.append(
                p.starmap_async(load_remove_save, ((
                    predicted_segmentation, output_file, (classes, )), )))
        results = [i.get() for i in results]

        max_size_removed = {}
        min_size_kept = {}
        for tmp in results:
            mx_rem, min_kept = tmp[0]
            for k in mx_rem:
                if mx_rem[k] is not None:
                    if max_size_removed.get(k) is None:
                        max_size_removed[k] = mx_rem[k]
                    else:
                        max_size_removed[k] = max(max_size_removed[k],
                                                  mx_rem[k])
            for k in min_kept:
                if min_kept[k] is not None:
                    if min_size_kept.get(k) is None:
                        min_size_kept[k] = min_kept[k]
                    else:
                        min_size_kept[k] = min(min_size_kept[k], min_kept[k])

        print("foreground vs background, smallest valid object size was",
              min_size_kept[tuple(classes)])
        print("removing only objects smaller than that...")

    else:
        min_size_kept = None

    pred_gt_tuples = []
    results = []
    for f in fnames:
        predicted_segmentation = os.path.join(base, raw_subfolder_name, f)
        output_file = os.path.join(folder_all_classes_as_fg, f)
        results.append(
            p.starmap_async(load_remove_save, (
                (predicted_segmentation, output_file, (classes, ), min_size_kept
                 ), )))
        pred_gt_tuples.append([output_file, os.path.join(gt_labels_folder, f)])

    _ = [i.get() for i in results]
    _ = aggregate_scores(
        pred_gt_tuples,
        labels=classes,
        json_output_file=os.path.join(folder_all_classes_as_fg, "summary.json"),
        json_author="medicalseg",
        num_threads=processes)
    validation_result_PP_test = load_json(
        os.path.join(folder_all_classes_as_fg, "summary.json"))['results'][
            'mean']

    for c in classes:
        dc_raw = validation_result_raw[str(c)]['Dice']
        dc_pp = validation_result_PP_test[str(c)]['Dice']
        pp_results['dc_per_class_raw'][str(c)] = dc_raw
        pp_results['dc_per_class_pp_all'][str(c)] = dc_pp

    do_fg_cc = False
    comp = [
        pp_results['dc_per_class_pp_all'][str(cl)] >
        (pp_results['dc_per_class_raw'][str(cl)] + dice_threshold)
        for cl in classes
    ]
    before = np.mean(
        [pp_results['dc_per_class_raw'][str(cl)] for cl in classes])
    after = np.mean(
        [pp_results['dc_per_class_pp_all'][str(cl)] for cl in classes])
    print("Foreground vs background")
    print("before:", before)
    print("after: ", after)
    if any(comp):
        any_worse = any([
            pp_results['dc_per_class_pp_all'][str(cl)] <
            pp_results['dc_per_class_raw'][str(cl)] for cl in classes
        ])
        if not any_worse:
            pp_results['for_which_classes'].append(classes)
            if min_size_kept is not None:
                pp_results['min_valid_object_sizes'].update(
                    deepcopy(min_size_kept))
            do_fg_cc = True
            print(
                "Removing all but the largest foreground region improved results!"
            )
            print('for_which_classes', classes)
            print('min_valid_object_sizes', min_size_kept)
    else:
        pass

    if len(classes) > 1:
        if do_fg_cc:
            source = folder_all_classes_as_fg
        else:
            source = os.path.join(base, raw_subfolder_name)

        if advanced_postprocessing:
            results = []
            for f in fnames:
                predicted_segmentation = os.path.join(source, f)
                output_file = os.path.join(folder_per_class, f)
                results.append(
                    p.starmap_async(load_remove_save, ((
                        predicted_segmentation, output_file, classes), )))
            results = [i.get() for i in results]

            max_size_removed = {}
            min_size_kept = {}
            for tmp in results:
                mx_rem, min_kept = tmp[0]
                for k in mx_rem:
                    if mx_rem[k] is not None:
                        if max_size_removed.get(k) is None:
                            max_size_removed[k] = mx_rem[k]
                        else:
                            max_size_removed[k] = max(max_size_removed[k],
                                                      mx_rem[k])
                for k in min_kept:
                    if min_kept[k] is not None:
                        if min_size_kept.get(k) is None:
                            min_size_kept[k] = min_kept[k]
                        else:
                            min_size_kept[k] = min(min_size_kept[k],
                                                   min_kept[k])
            print(
                "classes treated separately, smallest valid object sizes are {}, removing only objects smaller than that.".
                format(min_size_kept))
        else:
            min_size_kept = None

        pred_gt_tuples = []
        results = []
        for f in fnames:
            predicted_segmentation = os.path.join(source, f)
            output_file = os.path.join(folder_per_class, f)
            results.append(
                p.starmap_async(load_remove_save, (
                    (predicted_segmentation, output_file, classes, min_size_kept
                     ), )))
            pred_gt_tuples.append(
                [output_file, os.path.join(gt_labels_folder, f)])

        _ = [i.get() for i in results]
        _ = aggregate_scores(
            pred_gt_tuples,
            labels=classes,
            json_output_file=os.path.join(folder_per_class, "summary.json"),
            json_author="medicalseg",
            num_threads=processes)

        if do_fg_cc:
            old_res = deepcopy(validation_result_PP_test)
        else:
            old_res = validation_result_raw
        validation_result_PP_test = load_json(
            os.path.join(folder_per_class, "summary.json"))['results']['mean']

        for c in classes:
            dc_raw = old_res[str(c)]['Dice']
            dc_pp = validation_result_PP_test[str(c)]['Dice']
            pp_results['dc_per_class_pp_per_class'][str(c)] = dc_pp
            print(c)
            print("before:", dc_raw)
            print("after: ", dc_pp)

            if dc_pp > (dc_raw + dice_threshold):
                pp_results['for_which_classes'].append(int(c))
                if min_size_kept is not None:
                    pp_results['min_valid_object_sizes'].update({
                        c: min_size_kept[c]
                    })
                print(
                    "Removing all but the largest region for class %d improved results!"
                    % c)
                print('min_valid_object_sizes', min_size_kept)
    else:
        print(
            "Only one class present, no need to do each class separately as this is covered in fg vs bg"
        )

    if not advanced_postprocessing:
        pp_results['min_valid_object_sizes'] = None

    print("done")
    print("for which classes:")
    print(pp_results['for_which_classes'])
    print("min_object_sizes")
    print(pp_results['min_valid_object_sizes'])

    pp_results['validation_raw'] = raw_subfolder_name
    pp_results['validation_final'] = final_subf_name

    pred_gt_tuples = []
    results = []
    for f in fnames:
        predicted_segmentation = os.path.join(base, raw_subfolder_name, f)
        output_file = os.path.join(base, final_subf_name, f)
        results.append(
            p.starmap_async(load_remove_save, ((
                predicted_segmentation, output_file, pp_results[
                    'for_which_classes'], pp_results['min_valid_object_sizes']),
                                               )))

        pred_gt_tuples.append([output_file, os.path.join(gt_labels_folder, f)])

    _ = [i.get() for i in results]
    _ = aggregate_scores(
        pred_gt_tuples,
        labels=classes,
        json_output_file=os.path.join(base, final_subf_name, "summary.json"),
        json_author="medicalseg",
        num_threads=processes)
    pp_results['min_valid_object_sizes'] = str(pp_results[
        'min_valid_object_sizes'])
    save_json(pp_results, os.path.join(base, pp_filename))

    if not debug:
        shutil.rmtree(folder_per_class)
        shutil.rmtree(folder_all_classes_as_fg)

    p.close()
    p.join()
    print("post processing done.")


def load_json(file: str):
    with open(file, 'r') as f:
        data = json.load(f)
    return data


def save_json(obj, file: str, indent: int=4, sort_keys: bool=True) -> None:
    with open(file, 'w') as f:
        json.dump(obj, f, sort_keys=sort_keys, indent=indent)