evaluator.py 12.2 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Implementation of this model is borrowed and modified
# (from torch to paddle) from here:
# https://github.com/MIC-DKFZ/nnUNet

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import collections
import inspect
import json
import hashlib
from datetime import datetime
from multiprocessing.pool import Pool
import numpy as np
import pandas as pd
import SimpleITK as sitk
from collections import OrderedDict
from .metrics import ConfusionMatrix, ALL_METRICS


class Evaluator:
    default_metrics = [
        "False Positive Rate", "Dice", "Jaccard", "Precision", "Recall",
        "Accuracy", "False Omission Rate", "Negative Predictive Value",
        "False Negative Rate", "True Negative Rate", "False Discovery Rate",
        "Total Positives Test", "Total Positives Reference"
    ]

    default_advanced_metrics = ["Hausdorff Distance 95", ]

    def __init__(self,
                 test=None,
                 reference=None,
                 labels=None,
                 metrics=None,
                 advanced_metrics=None,
                 nan_for_nonexisting=True):
        self.test = None
        self.reference = None
        self.confusion_matrix = ConfusionMatrix()
        self.labels = None
        self.nan_for_nonexisting = nan_for_nonexisting
        self.result = None

        self.metrics = []
        if metrics is None:
            for m in self.default_metrics:
                self.metrics.append(m)
        else:
            for m in metrics:
                self.metrics.append(m)

        self.advanced_metrics = []
        if advanced_metrics is None:
            for m in self.default_advanced_metrics:
                self.advanced_metrics.append(m)
        else:
            for m in advanced_metrics:
                self.advanced_metrics.append(m)

        self.set_reference(reference)
        self.set_test(test)
        if labels is not None:
            self.set_labels(labels)
        else:
            if test is not None and reference is not None:
                self.construct_labels()

    def set_test(self, test):
        self.test = test

    def set_reference(self, reference):
        self.reference = reference

    def set_labels(self, labels):
        if isinstance(labels, dict):
            self.labels = collections.OrderedDict(labels)
        elif isinstance(labels, set):
            self.labels = list(labels)
        elif isinstance(labels, np.ndarray):
            self.labels = [i for i in labels]
        elif isinstance(labels, (list, tuple)):
            self.labels = labels
        else:
            raise TypeError(
                "Can only handle dict, list, tuple, set & numpy array, but input is of type {}".
                format(type(labels)))

    def construct_labels(self):
        if self.test is None and self.reference is None:
            raise ValueError("No test or reference segmentations.")
        elif self.test is None:
            labels = np.unique(self.reference)
        else:
            labels = np.union1d(np.unique(self.test), np.unique(self.reference))
        self.labels = list(map(lambda x: int(x), labels))

    def set_metrics(self, metrics):
        if isinstance(metrics, set):
            self.metrics = list(metrics)
        elif isinstance(metrics, (list, tuple, np.ndarray)):
            self.metrics = metrics
        else:
            raise TypeError(
                "Can only handle list, tuple, set & numpy array, but input is of type {}".
                format(type(metrics)))

    def add_metric(self, metric):
        if metric not in self.metrics:
            self.metrics.append(metric)

    def evaluate(self,
                 test=None,
                 reference=None,
                 advanced=False,
                 **metric_kwargs):
        if test is not None:
            self.set_test(test)

        if reference is not None:
            self.set_reference(reference)

        if self.test is None or self.reference is None:
            raise ValueError("Need both test and reference segmentations.")

        if self.labels is None:
            self.construct_labels()

        self.metrics.sort()
        _funcs = {
            m: ALL_METRICS[m]
            for m in self.metrics + self.advanced_metrics
        }
        frames = inspect.getouterframes(inspect.currentframe())
        for metric in self.metrics:
            for f in frames:
                if metric in f[0].f_locals:
                    _funcs[metric] = f[0].f_locals[metric]
                    break
                else:
                    if metric in _funcs:
                        continue
                    else:
                        raise NotImplementedError(
                            "Metric {} not implemented.".format(metric))

        self.result = OrderedDict()
        eval_metrics = self.metrics
        if advanced:
            eval_metrics += self.advanced_metrics
        if isinstance(self.labels, dict):
            for label, name in self.labels.items():
                k = str(name)
                self.result[k] = OrderedDict()
                if not hasattr(label, "__iter__"):
                    self.confusion_matrix.set_test(self.test == label)
                    self.confusion_matrix.set_reference(self.reference == label)
                else:
                    current_test = 0
                    current_reference = 0
                    for l in label:
                        current_test += (self.test == l)
                        current_reference += (self.reference == l)
                    self.confusion_matrix.set_test(current_test)
                    self.confusion_matrix.set_reference(current_reference)
                for metric in eval_metrics:
                    self.result[k][metric] = _funcs[metric](
                        confusion_matrix=self.confusion_matrix,
                        nan_for_nonexisting=self.nan_for_nonexisting,
                        **metric_kwargs)
        else:
            for i, l in enumerate(self.labels):
                k = str(l)
                self.result[k] = OrderedDict()
                self.confusion_matrix.set_test(self.test == l)
                self.confusion_matrix.set_reference(self.reference == l)
                for metric in eval_metrics:
                    self.result[k][metric] = _funcs[metric](
                        confusion_matrix=self.confusion_matrix,
                        nan_for_nonexisting=self.nan_for_nonexisting,
                        **metric_kwargs)
        return self.result

    def to_dict(self):
        if self.result is None:
            self.evaluate()
        return self.result

    def to_array(self):
        if self.result is None:
            self.evaluate
        result_metrics = sorted(self.result[list(self.result.keys())[0]].keys())
        a = np.zeros((len(self.labels), len(result_metrics)), dtype=np.float32)
        if isinstance(self.labels, dict):
            for i, label in enumerate(self.labels.keys()):
                for j, metric in enumerate(result_metrics):
                    a[i][j] = self.result[self.labels[label]][metric]
        else:
            for i, label in enumerate(self.labels):
                for j, metric in enumerate(result_metrics):
                    a[i][j] = self.result[label][metric]
        return a

    def to_pandas(self):
        a = self.to_array()
        if isinstance(self.labels, dict):
            labels = list(self.labels.values())
        else:
            labels = self.label
        result_metrics = sorted(self.result[list(self.result.keys())[0]].keys())
        return pd.DataFrame(a, index=labels, columns=result_metrics)


class NiftiEvaluator(Evaluator):
    def __init__(self, *args, **kwargs):
        self.test_nifti = None
        self.reference_nifti = None
        super(NiftiEvaluator, self).__init__(*args, **kwargs)

    def set_test(self, test):
        if test is not None:
            self.test_nifti = sitk.ReadImage(test)
            super(NiftiEvaluator,
                  self).set_test(sitk.GetArrayFromImage(self.test_nifti))
        else:
            self.test_nifti = None
            super(NiftiEvaluator, self).set_test(test)

    def set_reference(self, reference):
        if reference is not None:
            self.reference_nifti = sitk.ReadImage(reference)
            super(NiftiEvaluator, self).set_reference(
                sitk.GetArrayFromImage(self.reference_nifti))
        else:
            self.reference_nifti = None
            super(NiftiEvaluator, self).set_reference(reference)

    def evaluate(self,
                 test=None,
                 reference=None,
                 voxel_spacing=None,
                 **metric_kwargs):
        if voxel_spacing is None:
            voxel_spacing = np.array(self.test_nifti.GetSpacing())[::-1]
            metric_kwargs["voxel_spacing"] = voxel_spacing
        return super(NiftiEvaluator, self).evaluate(test, reference,
                                                    **metric_kwargs)


def run_evaluation(args):
    test, ref, evaluator, metric_kwargs = args
    evaluator.set_test(test)
    evaluator.set_reference(ref)
    if evaluator.labels is None:
        evaluator.construct_labels()
    current_scores = evaluator.evaluate(**metric_kwargs)
    if type(test) == str:
        current_scores["test"] = test
    if type(ref) == str:
        current_scores["reference"] = ref
    return current_scores


def aggregate_scores(test_ref_pairs,
                     evaluator=NiftiEvaluator,
                     labels=None,
                     nanmean=True,
                     json_output_file=None,
                     json_name="",
                     json_description="",
                     json_author="medicalseg",
                     json_task="",
                     num_threads=2,
                     **metric_kwargs):

    if type(evaluator) == type:
        evaluator = evaluator()

    if labels is not None:
        evaluator.set_labels(labels)

    all_scores = OrderedDict()
    all_scores["all"] = []
    all_scores["mean"] = OrderedDict()

    test = [i[0] for i in test_ref_pairs]
    ref = [i[1] for i in test_ref_pairs]
    p = Pool(num_threads)
    all_res = p.map(run_evaluation,
                    zip(test, ref, [evaluator] * len(ref),
                        [metric_kwargs] * len(ref)))
    p.close()
    p.join()

    for i in range(len(all_res)):
        all_scores["all"].append(all_res[i])
        for label, score_dict in all_res[i].items():
            if label in ("test", "reference"):
                continue
            if label not in all_scores["mean"]:
                all_scores["mean"][label] = OrderedDict()
            for score, value in score_dict.items():
                if score not in all_scores["mean"][label]:
                    all_scores["mean"][label][score] = []
                all_scores["mean"][label][score].append(value)

    for label in all_scores["mean"]:
        for score in all_scores["mean"][label]:
            if nanmean:
                all_scores["mean"][label][score] = float(
                    np.nanmean(all_scores["mean"][label][score]))
            else:
                all_scores["mean"][label][score] = float(
                    np.mean(all_scores["mean"][label][score]))

    if json_output_file is not None:
        json_dict = OrderedDict()
        json_dict["name"] = json_name
        json_dict["description"] = json_description
        timestamp = datetime.today()
        json_dict["timestamp"] = str(timestamp)
        json_dict["task"] = json_task
        json_dict["author"] = json_author
        json_dict["results"] = all_scores
        json_dict["id"] = hashlib.md5(json.dumps(json_dict).encode(
            "utf-8")).hexdigest()[:12]
        with open(json_output_file, 'w') as f:
            json.dump(json_dict, f, sort_keys=True, indent=4)
    return all_scores