cascade_utils.py 4.83 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Implementation of this model is borrowed and modified
# (from torch to paddle) from here:
# https://github.com/MIC-DKFZ/nnUNet

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import numpy as np

import paddle

from typing import Tuple
from multiprocessing import Pool
from . import resample_and_save, DynamicPredictor


def predict_preprocessed_data_return_seg_and_softmax(
        predictor,
        dataset,
        data: np.ndarray,
        do_mirroring: bool=True,
        mirror_axes: Tuple[int]=None,
        use_sliding_window: bool=True,
        step_size: float=0.5,
        use_gaussian: bool=True,
        pad_border_mode: str='constant',
        pad_kwargs: dict=None,
        verbose: bool=True,
        mixed_precision: bool=True) -> Tuple[np.ndarray, np.ndarray]:
    if pad_border_mode == 'constant' and pad_kwargs is None:
        pad_kwargs = {'constant_values': 0}

    if do_mirroring and mirror_axes is None:
        mirror_axes = dataset.data_aug_params['mirror_axes']

    if do_mirroring:
        assert dataset.data_aug_params["do_mirror"], "Cannot do mirroring as test time augmentation when training " \
                                                  "was done without mirroring"
    with paddle.no_grad():
        argmax_pred, softmax_pred = predictor.predict_3D(
            data,
            do_mirroring=do_mirroring,
            mirror_axes=mirror_axes,
            use_sliding_window=use_sliding_window,
            step_size=step_size,
            patch_size=dataset.patch_size,
            regions_class_order=None,
            use_gaussian=use_gaussian,
            pad_border_mode=pad_border_mode,
            pad_kwargs=pad_kwargs,
            verbose=verbose,
            mixed_precision=mixed_precision)
    return argmax_pred, softmax_pred


def predict_next_stage(model,
                       plans,
                       dataset,
                       output_folder,
                       stage_to_be_predicted_folder,
                       mixed_precision,
                       num_threads=4):
    output_folder = os.path.join(output_folder, "pred_next_stage")
    os.makedirs(output_folder, exist_ok=True)

    if 'segmentation_export_params' in plans.keys():
        force_separate_z = plans['segmentation_export_params'][
            'force_separate_z']
        interpolation_order = plans['segmentation_export_params'][
            'interpolation_order']
        interpolation_order_z = plans['segmentation_export_params'][
            'interpolation_order_z']
    else:
        force_separate_z = None
        interpolation_order = 1
        interpolation_order_z = 0

    export_pool = Pool(num_threads)
    results = []

    model.eval()
    predictor = DynamicPredictor(model)

    for pat in dataset.dataset_val.keys():
        print(pat, 'predict next stage...')
        data_file = dataset.dataset_val[pat]['data_file']
        data_preprocessed = np.load(data_file)['data'][:-1]
        data_file_nofolder = data_file.split("/")[-1]
        data_file_nextstage = os.path.join(stage_to_be_predicted_folder,
                                           data_file_nofolder)
        data_nextstage = np.load(data_file_nextstage)['data']
        target_shp = data_nextstage.shape[1:]
        output_file = os.path.join(
            output_folder,
            data_file_nextstage.split("/")[-1][:-4] + "_segFromPrevStage.npz")
        if os.path.exists(output_file):
            print("{} already exists, skip.".format(output_file))
            continue

        _, predicted_probabilities = predict_preprocessed_data_return_seg_and_softmax(
            predictor,
            dataset,
            data_preprocessed,
            do_mirroring=dataset.data_aug_params["do_mirror"],
            mirror_axes=dataset.data_aug_params['mirror_axes'],
            mixed_precision=mixed_precision)

        if np.prod(predicted_probabilities.shape) > (2e9 / 4 * 0.85):
            np.save(output_file[:-4] + ".npy", predicted_probabilities)
            predicted_probabilities = output_file[:-4] + ".npy"

        results.append(
            export_pool.starmap_async(resample_and_save, [(
                predicted_probabilities, target_shp, output_file,
                force_separate_z, interpolation_order, interpolation_order_z)]))

    _ = [i.get() for i in results]
    export_pool.close()
    export_pool.join()