single_fold_eval.py 10.6 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
# Implementation of this model is borrowed and modified
# (from torch to paddle) from here:
# https://github.com/MIC-DKFZ/nnUNet

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import shutil
import paddle
import numpy as np
import pickle
import sys

parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

from medicalseg.cvlibs import Config
from medicalseg.utils import get_sys_env, logger, config_check, utils

from nnunet.utils import DynamicPredictor, save_segmentation_nifti_from_softmax, aggregate_scores, determine_postprocessing, resample_and_save, predict_next_stage


def to_one_hot(seg, all_seg_labels=None):
    if all_seg_labels is None:
        all_seg_labels = np.unique(seg)
    result = np.zeros((len(all_seg_labels), *seg.shape), dtype=seg.dtype)
    for i, l in enumerate(all_seg_labels):
        result[i][seg == l] = 1
    return result


def evaluate(model, eval_dataset, args):
    """
    Launch evalution.
    Args:
        model(nn.Layer): A sementic segmentation model.
        eval_dataset (paddle.io.Dataset): Used to read and process validation datasets.
        args(str, optional): configura args.
    """
    model.eval()
    predictor = DynamicPredictor(model)
    plans = model.plans
    if 'segmentation_export_params' in plans.keys():
        force_separate_z = plans['segmentation_export_params'][
            'force_separate_z']
        interpolation_order = plans['segmentation_export_params'][
            'interpolation_order']
        interpolation_order_z = plans['segmentation_export_params'][
            'interpolation_order_z']
    else:
        force_separate_z = None
        interpolation_order = 1
        interpolation_order_z = 0
    output_base = args.val_save_folder
    output_folder = os.path.join(output_base,
                                 'fold_{}'.format(eval_dataset.fold))
    validation_raw_folder = os.path.join(output_folder, 'validation_raw')

    os.makedirs(validation_raw_folder, exist_ok=True)
    if not eval_dataset.data_aug_params['do_mirror']:
        raise RuntimeError(
            "We did not train with mirroring so you cannot do inference with mirroring enabled"
        )
    mirror_axes = eval_dataset.data_aug_params['mirror_axes']

    if args.predict_next_stage:
        next_stage_output_folder = eval_dataset.folder_with_segs_from_prev_stage
        os.makedirs(next_stage_output_folder, exist_ok=True)

    print('start evaluating...')
    pred_gt_tuples = []
    gt_niftis_folder = os.path.join(eval_dataset.preprocessed_dir,
                                    "gt_segmentations")  # gt dir
    for k in eval_dataset.dataset_val.keys():
        with open(eval_dataset.dataset[k]['properties_file'], 'rb') as f:
            properties = pickle.load(f)
        fname = properties['list_of_data_files'][0].split("/")[-1][:-12]
        pred_gt_tuples.append([
            os.path.join(validation_raw_folder, fname + '.nii.gz'),
            os.path.join(gt_niftis_folder, fname + '.nii.gz'),
        ])
        if os.path.exists(
                os.path.join(validation_raw_folder, fname + '.nii.gz')):
            print('{} already exists, skip.'.format(
                os.path.join(validation_raw_folder, fname + '.nii.gz')))
            continue
        data = np.load(eval_dataset.dataset[k]['data_file'])['data']
        print(k, data.shape)
        data[-1][data[-1] == -1] = 0
        data = data[:-1]

        if eval_dataset.stage == 1 and eval_dataset.cascade:
            seg_pre_path = os.path.join(
                eval_dataset.folder_with_segs_from_prev_stage,
                k + "_segFromPrevStage.npz")
            if not os.path.exists(seg_pre_path):
                raise UserWarning(
                    'cannot find stage 1 segmentation result for {}.'.format(
                        seg_pre_path))
            seg_from_prev_stage = np.load(seg_pre_path)['data'][None]
            data = np.concatenate(
                (data, to_one_hot(seg_from_prev_stage[0],
                                  range(1, eval_dataset.num_classes))))

        argmax_pred, softmax_pred = predictor.predict_3D(
            data,
            do_mirroring=args.do_mirroring,
            mirror_axes=mirror_axes,
            use_sliding_window=args.use_sliding_window,
            step_size=args.step_size,
            patch_size=eval_dataset.patch_size,
            regions_class_order=None,
            use_gaussian=args.use_gaussian,
            pad_border_mode='constant',
            pad_kwargs=None,
            verbose=args.verbose,
            mixed_precision=args.precision == 'fp16')

        softmax_pred = softmax_pred.transpose(
            [0] + [i + 1 for i in eval_dataset.transpose_backward])
        softmax_fname = os.path.join(validation_raw_folder, fname + '.npz')

        if np.prod(softmax_pred.shape) > (2e9 / 4 * 0.85):
            np.save(
                os.path.join(validation_raw_folder, fname + ".npy"),
                softmax_pred)
            softmax_pred = os.path.join(validation_raw_folder, fname + ".npy")

        save_segmentation_nifti_from_softmax(
            softmax_pred,
            os.path.join(validation_raw_folder, fname + '.nii.gz'), properties,
            interpolation_order, None, None, None, softmax_fname, None,
            force_separate_z, interpolation_order_z)

    _ = aggregate_scores(
        pred_gt_tuples,
        labels=list(range(eval_dataset.num_classes)),
        json_output_file=os.path.join(validation_raw_folder, "summary.json"),
        json_name=" val tiled %s" % (str(args.use_sliding_window)),
        json_author="medicalseg",
        json_task='task',
        num_threads=4)

    determine_postprocessing(
        output_folder,
        gt_niftis_folder,
        'validation_raw',
        final_subf_name='validation_raw' + "_postprocessed",
        debug=False)

    gt_nifti_folder = os.path.join(output_base, "gt_niftis")

    if not os.path.exists(gt_nifti_folder):
        os.makedirs(gt_nifti_folder, exist_ok=True)
    print('copy gt from {} to {}.'.format(gt_niftis_folder, gt_nifti_folder))

    gt_files = []
    for f_name in os.listdir(gt_niftis_folder):
        if os.path.isfile(os.path.join(gt_niftis_folder,
                                       f_name)) and f_name.endswith('.nii.gz'):
            gt_files.append(os.path.join(gt_niftis_folder, f_name))

    for f in gt_files:
        success = False
        attempts = 0
        e = None
        while not success and attempts < 10:
            try:
                shutil.copy(f, gt_nifti_folder)
                success = True
            except OSError as e:
                attempts += 1
        if not success:
            print("Could not copy gt nifti file %s into folder %s" %
                  (f, gt_nifti_folder))
            if e is not None:
                raise e

    if args.predict_next_stage:
        predict_next_stage(
            model,
            plans,
            eval_dataset,
            eval_dataset.preprocessed_dir,
            os.path.join(eval_dataset.preprocessed_dir,
                         plans['data_identifier'] + "_stage%d" % 1),
            args.precision == 'fp16',
            num_threads=4)


def parse_args():
    parser = argparse.ArgumentParser(description='Model evaluation')

    # params of evaluate
    parser.add_argument(
        "--config", dest="cfg", help="The config file.", default=None, type=str)

    parser.add_argument(
        '--model_path',
        dest='model_path',
        help='The path of model for evaluation',
        type=str,
        default="saved_model/vnet_lung_coronavirus_128_128_128_15k/best_model/model.pdparams"
    )

    parser.add_argument(
        '--predict_next_stage',
        action='store_true',
        default=False,
        help='whether predict stage 2 training data.')

    parser.add_argument(
        '--val_save_folder',
        dest='val_save_folder',
        help='The path to val data predicted result',
        type=str,
        default="val_save_folder")

    parser.add_argument(
        "--precision",
        default="fp32",
        type=str,
        choices=["fp32", "fp16"],
        help="Use AMP (Auto mixed precision) if precision='fp16'. If precision='fp32', the training is normal."
    )

    parser.add_argument(
        "--do_mirroring",
        dest='do_mirroring',
        type=bool,
        default=True,
        help="Whether use mirroring when inference.")

    parser.add_argument(
        "--use_sliding_window",
        dest='use_sliding_window',
        type=bool,
        default=True,
        help="Whether use sliding window when inference.")

    parser.add_argument(
        "--step_size",
        dest='step_size',
        type=float,
        default=0.5,
        help="step size when predict.")

    parser.add_argument(
        "--use_gaussian",
        dest='use_gaussian',
        type=bool,
        default=True,
        help="Whether use gaussian.")

    parser.add_argument(
        "--verbose",
        dest='verbose',
        type=bool,
        default=True,
        help="Whether print log.")

    return parser.parse_args()


def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)

    val_dataset = cfg.val_dataset
    if val_dataset is None:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )
    elif len(val_dataset) == 0:
        raise ValueError(
            'The length of val_dataset is 0. Please check if your dataset is valid'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    if args.model_path:
        utils.load_entire_model(model, args.model_path)
        logger.info('Loaded trained params of model successfully')

    config_check(cfg, val_dataset=val_dataset)

    evaluate(model, val_dataset, args)


if __name__ == '__main__':
    args = parse_args()
    main(args)