dataset.py 23.2 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
# Implementation of this model is borrowed and modified
# (from torch to paddle) from here:
# https://github.com/MIC-DKFZ/nnUNet

# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import glob
import json
import numpy as np

from multiprocessing import Pool
from collections import OrderedDict
from sklearn.model_selection import KFold
from typing import List

from medicalseg.datasets import MedicalDataset
from medicalseg.cvlibs import manager
from nnunet.transforms import get_moreDA_augmentation, default_2D_augmentation_params, default_3D_augmentation_params
from nnunet.transforms import rotate_coords_3d, rotate_coords_2d, NumpyToTensor

from .dataloader import DataLoader2D, DataLoader3D
from tools.preprocess_utils import verify_dataset_integrity, convert_to_decathlon, crop, ExperimentPlanner2D_v21, ExperimentPlanner3D_v21, DatasetAnalyzer


@manager.DATASETS.add_component
class MSDDataset(MedicalDataset):
    def __init__(self,
                 plans_name=None,
                 num_batches_per_epoch=250,
                 fold=0,
                 dataset_directory=None,
                 raw_data_dir=None,
                 decathlon_dir=None,
                 cropped_data_dir=None,
                 preprocessed_dir=None,
                 plan2d=False,
                 plan3d=False,
                 stage=None,
                 cascade=False,
                 dataset_root=None,
                 result_dir=None,
                 use_multi_augmenter=True,
                 transforms=None,
                 num_classes=None,
                 unpack_data=True,
                 mode='train',
                 ignore_index=255,
                 num_threads=4):
        self.raw_data_dir = raw_data_dir
        self.decathlon_dir = decathlon_dir
        self.cropped_data_dir = cropped_data_dir
        self.num_threads = num_threads
        self.plan2d = plan2d
        self.plan3d = plan3d
        self.preprocessed_dir = preprocessed_dir
        self.preprocess_and_generate_plans()
        self.cascade = cascade
        self.use_multi_augmenter = use_multi_augmenter

        self.folder_with_segs_from_prev_stage = os.path.join(preprocessed_dir,
                                                             'pred_next_stage')

        self.dataset_directory = preprocessed_dir
        self.unpack_data = unpack_data
        self.stage = stage

        self.fold = fold
        self.num_batches_per_epoch = num_batches_per_epoch
        self.plans_path = os.path.join(self.preprocessed_dir, plans_name)
        self.dataset_root = dataset_root
        self.result_dir = result_dir
        self.file_list = list()
        self.mode = mode.lower()
        self.ignore_index = ignore_index

        self.oversample_foreground_percent = 0.33
        self.pin_memory = True
        self.initialize()

        self.convert_to_tensor = NumpyToTensor(['data', 'target'], 'float32')

    def __len__(self):
        return self.num_batches_per_epoch

    def __getitem__(self, idx):
        data_dict = next(self.gen)
        data_dict = self.convert_to_tensor(**data_dict)
        return data_dict['data'], data_dict['target']

    def preprocess_and_generate_plans(self):
        if not os.path.exists(self.decathlon_dir):
            print("{} not found, convert data to decathlon.".format(
                self.decathlon_dir))
            convert_to_decathlon(
                input_folder=self.raw_data_dir,
                output_folder=self.decathlon_dir,
                num_processes=self.num_threads)
            verify_dataset_integrity(
                self.decathlon_dir, default_num_threads=self.num_threads)
        if not os.path.exists(self.cropped_data_dir):
            print("{} not found, crop data, it may be time consuming.".format(
                self.cropped_data_dir))
            crop(
                self.decathlon_dir,
                self.cropped_data_dir,
                override=False,
                num_threads=self.num_threads)

        if not os.path.exists(
                os.path.join(self.cropped_data_dir, 'dataset_properties.pkl')):
            print("{} not exist, analyzing dataset...".format(
                os.path.join(self.cropped_data_dir, 'dataset_properties.pkl')))
            with open(
                    os.path.join(
                        os.path.join(self.cropped_data_dir, 'dataset.json')),
                    'rb') as f:
                dataset_json = json.load(f)
            modalities = list(dataset_json["modality"].values())
            collect_intensityproperties = True if (
                ("CT" in modalities) or ("ct" in modalities)) else False
            dataset_analyzer = DatasetAnalyzer(
                self.cropped_data_dir,
                overwrite=True,
                num_processes=self.num_threads)
            dataset_analyzer.analyze_dataset(collect_intensityproperties)

        if self.plan2d:
            exp_planner_2d = ExperimentPlanner2D_v21(self.cropped_data_dir,
                                                     self.preprocessed_dir)
            if not os.path.exists(exp_planner_2d.plans_fname):
                print("{} not exists, generating plans, please wait a minute.".
                      format(exp_planner_2d.plans_fname))
                exp_planner_2d.plan_experiment()
                exp_planner_2d.run_preprocessing(self.num_threads)
        if self.plan3d:
            exp_planner_3d = ExperimentPlanner3D_v21(self.cropped_data_dir,
                                                     self.preprocessed_dir)
            if not os.path.exists(exp_planner_3d.plans_fname):
                print(
                    "{} already exists, generating plans, please wait a minute.".
                    format(exp_planner_3d.plans_fname))
                exp_planner_3d.plan_experiment()
                exp_planner_3d.run_preprocessing(self.num_threads)

    def get_basic_generators(self):
        self.load_dataset()
        self.do_split()

        if self.threeD:
            if self.stage == 0:
                dl_tr = DataLoader3D(
                    self.dataset_tr,
                    self.basic_generator_patch_size,
                    self.patch_size,
                    self.batch_size,
                    False,
                    oversample_foreground_percent=self.
                    oversample_foreground_percent,
                    pad_mode="constant",
                    pad_sides=self.pad_all_sides,
                    memmap_mode='r')
                dl_val = DataLoader3D(
                    self.dataset_val,
                    self.patch_size,
                    self.patch_size,
                    self.batch_size,
                    False,
                    oversample_foreground_percent=self.
                    oversample_foreground_percent,
                    pad_mode="constant",
                    pad_sides=self.pad_all_sides,
                    memmap_mode='r')
            else:
                dl_tr = DataLoader3D(
                    self.dataset_tr,
                    self.basic_generator_patch_size,
                    self.patch_size,
                    self.batch_size,
                    has_prev_stage=self.cascade,
                    oversample_foreground_percent=self.
                    oversample_foreground_percent,
                    pad_mode="constant",
                    pad_sides=self.pad_all_sides)
                dl_val = DataLoader3D(
                    self.dataset_val,
                    self.patch_size,
                    self.patch_size,
                    self.batch_size,
                    has_prev_stage=self.cascade,
                    oversample_foreground_percent=self.
                    oversample_foreground_percent,
                    pad_mode="constant",
                    pad_sides=self.pad_all_sides)
        else:
            dl_tr = DataLoader2D(
                self.dataset_tr,
                self.basic_generator_patch_size,
                self.patch_size,
                self.batch_size,
                oversample_foreground_percent=self.
                oversample_foreground_percent,
                pad_mode="constant",
                pad_sides=self.pad_all_sides,
                memmap_mode='r')
            dl_val = DataLoader2D(
                self.dataset_val,
                self.patch_size,
                self.patch_size,
                self.batch_size,
                oversample_foreground_percent=self.
                oversample_foreground_percent,
                pad_mode="constant",
                pad_sides=self.pad_all_sides,
                memmap_mode='r')
        return dl_tr, dl_val

    def initialize(self):
        self.load_plans_file()
        self.process_plans(self.plans)
        self.setup_DA_params()
        self.folder_with_preprocessed_data = os.path.join(
            self.dataset_directory,
            self.plans['data_identifier'] + "_stage%d" % self.stage)
        if len(
                glob.glob(
                    os.path.join(self.folder_with_preprocessed_data,
                                 '*.npy'))) <= 0:
            self.unpack_data = False
            print("unpacking dataset")
            unpack_dataset(
                self.folder_with_preprocessed_data, threads=self.num_threads)
            print("done")
        else:
            print("found unpacked dataset.")

        dl_tr, dl_val = self.get_basic_generators()
        tr_gen, val_gen = get_moreDA_augmentation(
            dl_tr,
            dl_val,
            self.data_aug_params['patch_size_for_spatialtransform'],
            self.data_aug_params,
            deep_supervision_scales=self.deep_supervision_scales,
            pin_memory=self.pin_memory,
            use_multi_augmenter=self.use_multi_augmenter)
        if self.mode == 'train':
            self.gen = tr_gen
        else:
            self.gen = val_gen

    def setup_DA_params(self):
        self.deep_supervision_scales = [[1, 1, 1]] + list(
            list(i)
            for i in 1 / np.cumprod(
                np.vstack(self.net_num_pool_op_kernel_sizes), axis=0))[:-1]

        if self.threeD:
            self.data_aug_params = default_3D_augmentation_params
            self.data_aug_params['rotation_x'] = (-30. / 360 * 2. * np.pi,
                                                  30. / 360 * 2. * np.pi)
            self.data_aug_params['rotation_y'] = (-30. / 360 * 2. * np.pi,
                                                  30. / 360 * 2. * np.pi)
            self.data_aug_params['rotation_z'] = (-30. / 360 * 2. * np.pi,
                                                  30. / 360 * 2. * np.pi)
            if self.do_dummy_2D_aug:
                self.data_aug_params["dummy_2D"] = True
                self.print_to_log_file("Using dummy2d data augmentation")
                self.data_aug_params[
                    "elastic_deform_alpha"] = default_2D_augmentation_params[
                        "elastic_deform_alpha"]
                self.data_aug_params[
                    "elastic_deform_sigma"] = default_2D_augmentation_params[
                        "elastic_deform_sigma"]
                self.data_aug_params[
                    "rotation_x"] = default_2D_augmentation_params["rotation_x"]
        else:
            self.do_dummy_2D_aug = False
            if max(self.patch_size) / min(self.patch_size) > 1.5:
                default_2D_augmentation_params['rotation_x'] = (
                    -15. / 360 * 2. * np.pi, 15. / 360 * 2. * np.pi)
            self.data_aug_params = default_2D_augmentation_params
        self.data_aug_params[
            "mask_was_used_for_normalization"] = self.use_mask_for_norm

        if self.do_dummy_2D_aug:
            self.basic_generator_patch_size = get_patch_size(
                self.patch_size[1:], self.data_aug_params['rotation_x'],
                self.data_aug_params['rotation_y'],
                self.data_aug_params['rotation_z'],
                self.data_aug_params['scale_range'])
            self.basic_generator_patch_size = np.array([self.patch_size[
                0]] + list(self.basic_generator_patch_size))
        else:
            self.basic_generator_patch_size = get_patch_size(
                self.patch_size, self.data_aug_params['rotation_x'],
                self.data_aug_params['rotation_y'],
                self.data_aug_params['rotation_z'],
                self.data_aug_params['scale_range'])

        self.data_aug_params["scale_range"] = (0.7, 1.4)
        self.data_aug_params["do_elastic"] = False
        self.data_aug_params['selected_seg_channels'] = [0]
        self.data_aug_params[
            'patch_size_for_spatialtransform'] = self.patch_size

        self.data_aug_params["num_cached_per_thread"] = 2

        if self.stage == 1 and self.cascade:
            self.data_aug_params["num_cached_per_thread"] = 2

            self.data_aug_params['move_last_seg_chanel_to_data'] = True
            self.data_aug_params['cascade_do_cascade_augmentations'] = True

            self.data_aug_params['cascade_random_binary_transform_p'] = 0.4
            self.data_aug_params[
                'cascade_random_binary_transform_p_per_label'] = 1
            self.data_aug_params['cascade_random_binary_transform_size'] = (1,
                                                                            8)

            self.data_aug_params['cascade_remove_conn_comp_p'] = 0.2
            self.data_aug_params[
                'cascade_remove_conn_comp_max_size_percent_threshold'] = 0.15
            self.data_aug_params[
                'cascade_remove_conn_comp_fill_with_other_class_p'] = 0.0

            self.data_aug_params['selected_seg_channels'] = [0, 1]
            self.data_aug_params['all_segmentation_labels'] = list(
                range(1, self.num_classes))

    def load_plans_file(self):
        with open(self.plans_path, 'rb') as f:
            self.plans = pickle.load(f)

    def process_plans(self, plans):
        if self.stage is None:
            assert len(list(plans['plans_per_stage'].keys())) == 1, \
                "If self.stage is None then there can be only one stage in the plans file. That seems to not be the " \
                "case. Please specify which stage of the cascade must be trained"
            self.stage = list(plans['plans_per_stage'].keys())[0]
        self.plans = plans

        stage_plans = self.plans['plans_per_stage'][self.stage]
        self.batch_size = stage_plans['batch_size']
        self.net_pool_per_axis = stage_plans['num_pool_per_axis']
        self.patch_size = np.array(stage_plans['patch_size']).astype(int)
        self.do_dummy_2D_aug = stage_plans['do_dummy_2D_data_aug']

        if 'pool_op_kernel_sizes' not in stage_plans.keys():
            assert 'num_pool_per_axis' in stage_plans.keys()
            self.print_to_log_file(
                "WARNING! old plans file with missing pool_op_kernel_sizes. Attempting to fix it..."
            )
            self.net_num_pool_op_kernel_sizes = []
            for i in range(max(self.net_pool_per_axis)):
                curr = []
                for j in self.net_pool_per_axis:
                    if (max(self.net_pool_per_axis) - j) <= i:
                        curr.append(2)
                    else:
                        curr.append(1)
                self.net_num_pool_op_kernel_sizes.append(curr)
        else:
            self.net_num_pool_op_kernel_sizes = stage_plans[
                'pool_op_kernel_sizes']

        if 'conv_kernel_sizes' not in stage_plans.keys():
            self.print_to_log_file(
                "WARNING! old plans file with missing conv_kernel_sizes. Attempting to fix it..."
            )
            self.net_conv_kernel_sizes = [[3] * len(self.net_pool_per_axis)
                                          ] * (max(self.net_pool_per_axis) + 1)
        else:
            self.net_conv_kernel_sizes = stage_plans['conv_kernel_sizes']

        self.pad_all_sides = None
        self.intensity_properties = plans['dataset_properties'][
            'intensityproperties']
        self.normalization_schemes = plans['normalization_schemes']
        self.base_num_features = plans['base_num_features']
        self.num_input_channels = plans['num_modalities']
        self.num_classes = plans['num_classes'] + 1

        self.classes = plans['all_classes']
        self.use_mask_for_norm = plans['use_mask_for_norm']
        self.only_keep_largest_connected_component = plans[
            'keep_only_largest_region']
        self.min_region_size_per_class = plans['min_region_size_per_class']
        self.min_size_per_class = None

        if plans.get('transpose_forward') is None or plans.get(
                'transpose_backward') is None:
            print(
                "WARNING! You seem to have data that was preprocessed with a previous version of nnU-Net. "
                "You should rerun preprocessing. We will proceed and assume that both transpose_foward "
                "and transpose_backward are [0, 1, 2]. If that is not correct then weird things will happen!"
            )
            plans['transpose_forward'] = [0, 1, 2]
            plans['transpose_backward'] = [0, 1, 2]
        self.transpose_forward = plans['transpose_forward']
        self.transpose_backward = plans['transpose_backward']

        if len(self.patch_size) == 2:
            self.threeD = False
        elif len(self.patch_size) == 3:
            self.threeD = True
        else:
            raise RuntimeError("invalid patch size in plans file: %s" %
                               str(self.patch_size))

        if "conv_per_stage" in plans.keys():
            self.conv_per_stage = plans['conv_per_stage']
        else:
            self.conv_per_stage = 2

    def load_dataset(self):
        self.dataset = load_dataset(self.folder_with_preprocessed_data)

    def do_split(self):
        splits_file = os.path.join(self.dataset_directory, "splits_final.pkl")
        if not os.path.isfile(splits_file):
            print("Creating new split...")
            splits = []
            all_keys_sorted = np.sort(list(self.dataset.keys()))
            kfold = KFold(n_splits=5, shuffle=True, random_state=12345)
            for i, (train_idx,
                    test_idx) in enumerate(kfold.split(all_keys_sorted)):
                train_keys = np.array(all_keys_sorted)[train_idx]
                test_keys = np.array(all_keys_sorted)[test_idx]
                splits.append(OrderedDict())
                splits[-1]['train'] = train_keys
                splits[-1]['val'] = test_keys
            with open(splits_file, 'wb') as f:
                pickle.dump(splits, f)

        with open(splits_file, 'rb') as f:
            splits = pickle.load(f)

        if self.fold == "all":
            tr_keys = val_keys = list(self.dataset.keys())
        else:
            tr_keys = splits[self.fold]['train']
            val_keys = splits[self.fold]['val']

        tr_keys.sort()
        val_keys.sort()

        self.dataset_tr = OrderedDict()
        for i in tr_keys:
            self.dataset_tr[i] = self.dataset[i]

        self.dataset_val = OrderedDict()
        for i in val_keys:
            self.dataset_val[i] = self.dataset[i]

        # cascade stage 2
        if self.stage == 1 and self.cascade:
            for k in self.dataset:
                self.dataset[k]['seg_from_prev_stage_file'] = os.path.join(
                    self.folder_with_segs_from_prev_stage,
                    k + "_segFromPrevStage.npz")

        print("dataset split over! dataset mode: {}, keys: {}".format(
            self.mode, tr_keys if self.mode == 'train' else val_keys))


def unpack_dataset(folder, threads=8, key="data"):
    p = Pool(threads)
    npz_files = [
        os.path.join(folder, path) for path in os.listdir(folder)
        if os.path.isfile(os.path.join(folder, path)) and path.endswith('.npz')
    ]
    npz_files.sort()
    p.map(convert_to_npy, zip(npz_files, [key] * len(npz_files)))
    p.close()
    p.join()


def subfiles(folder: str,
             join: bool=True,
             prefix: str=None,
             suffix: str=None,
             sort: bool=True) -> List[str]:
    if join:
        l = os.path.join
    else:
        l = lambda x, y: y
    res = [
        l(folder, i) for i in os.listdir(folder)
        if os.path.isfile(os.path.join(folder, i)) and
        (prefix is None or i.startswith(prefix)
         ) and (suffix is None or i.endswith(suffix))
    ]
    if sort:
        res.sort()
    return res


def get_patch_size(final_patch_size, rot_x, rot_y, rot_z, scale_range):
    if isinstance(rot_x, (tuple, list)):
        rot_x = max(np.abs(rot_x))
    if isinstance(rot_y, (tuple, list)):
        rot_y = max(np.abs(rot_y))
    if isinstance(rot_z, (tuple, list)):
        rot_z = max(np.abs(rot_z))
    rot_x = min(90 / 360 * 2. * np.pi, rot_x)
    rot_y = min(90 / 360 * 2. * np.pi, rot_y)
    rot_z = min(90 / 360 * 2. * np.pi, rot_z)

    coords = np.array(final_patch_size)
    final_shape = np.copy(coords)
    if len(coords) == 3:
        final_shape = np.max(
            np.vstack((np.abs(rotate_coords_3d(coords, rot_x, 0, 0)),
                       final_shape)), 0)
        final_shape = np.max(
            np.vstack((np.abs(rotate_coords_3d(coords, 0, rot_y, 0)),
                       final_shape)), 0)
        final_shape = np.max(
            np.vstack((np.abs(rotate_coords_3d(coords, 0, 0, rot_z)),
                       final_shape)), 0)
    elif len(coords) == 2:
        final_shape = np.max(
            np.vstack((np.abs(rotate_coords_2d(coords, rot_x)), final_shape)),
            0)
    final_shape /= min(scale_range)
    return final_shape.astype(int)


def convert_to_npy(args):
    if not isinstance(args, tuple):
        key = "data"
        npz_file = args
    else:
        npz_file, key = args
    if not os.path.isfile(npz_file[:-3] + "npy"):
        a = np.load(npz_file)[key]
        np.save(npz_file[:-3] + "npy", a)


def get_case_identifiers(folder):
    case_identifiers = [
        i[:-4] for i in os.listdir(folder)
        if i.endswith("npz") and (i.find("segFromPrevStage") == -1)
    ]
    return case_identifiers


def load_dataset(folder, num_cases_properties_loading_threshold=1000):
    print('loading dataset')
    case_identifiers = get_case_identifiers(folder)
    case_identifiers.sort()
    dataset = OrderedDict()
    for c in case_identifiers:
        dataset[c] = OrderedDict()
        dataset[c]['data_file'] = os.path.join(folder, "%s.npz" % c)

        dataset[c]['properties_file'] = os.path.join(folder, "%s.pkl" % c)

        if dataset[c].get('seg_from_prev_stage_file') is not None:
            dataset[c]['seg_from_prev_stage_file'] = os.path.join(
                folder, "%s_segs.npz" % c)

    if len(case_identifiers) <= num_cases_properties_loading_threshold:
        print('loading all case properties')
        for i in dataset.keys():
            with open(dataset[i]['properties_file'], 'rb') as f:
                dataset[i]['properties'] = pickle.load(f)
    return dataset