loss_utils.py 2.12 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


def check_logits_losses(logits_list, losses):
    len_logits = len(logits_list)
    len_losses = len(losses['types'])
    if len_logits != len_losses:
        raise RuntimeError(
            'The length of logits_list should equal to the types of loss config: {} != {}.'
            .format(len_logits, len_losses))


def loss_computation(logits_list, labels, losses, edges=None):
    check_logits_losses(logits_list, losses)
    loss_list = []
    per_channel_dice = None

    for i in range(len(logits_list)):
        logits = logits_list[i]
        loss_i = losses['types'][i]
        coef_i = losses['coef'][i]

        if loss_i.__class__.__name__ in ('BCELoss', 'FocalLoss'
                                         ) and loss_i.edge_label:
            # If use edges as labels According to loss type.
            loss_list.append(coef_i * loss_i(logits, edges))
        elif loss_i.__class__.__name__ == 'MixedLoss':
            mixed_loss_list, per_channel_dice = loss_i(logits, labels)
            for mixed_loss in mixed_loss_list:
                loss_list.append(coef_i * mixed_loss)
        elif loss_i.__class__.__name__ in ("KLLoss", ):
            loss_list.append(coef_i *
                             loss_i(logits_list[0], logits_list[1].detach()))
        elif loss_i.__class__.__name__ in ["DiceLoss", "MultipleLoss"]:
            loss, per_channel_dice = loss_i(logits, labels)
            loss_list.append(coef_i * loss)
        else:
            loss_list.append(coef_i * loss_i(logits, labels))

    return loss_list, per_channel_dice