infer.py 17.9 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import codecs
import warnings
import argparse

LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(LOCAL_PATH, '..', '..'))

import yaml
import functools
import numpy as np

from paddle.inference import create_predictor, PrecisionType
from paddle.inference import Config as PredictConfig
import paddle

import medicalseg.transforms as T
from medicalseg.cvlibs import manager
from medicalseg.utils import get_sys_env, logger, get_image_list
from medicalseg.utils.visualize import get_pseudo_color_map
from medicalseg.core.infer import sliding_window_inference
from tools import HUnorm, resample
from tools import Prep


def parse_args():
    parser = argparse.ArgumentParser(description='Test')
    parser.add_argument(
        "--config",
        dest="cfg",
        help="The config file.",
        default=None,
        type=str,
        required=True)
    parser.add_argument(
        '--image_path',
        dest='image_path',
        help='The directory or path or file list of the images to be predicted.',
        type=str,
        default=None,
        required=True)
    parser.add_argument(
        '--batch_size',
        dest='batch_size',
        help='Mini batch size of one gpu or cpu.',
        type=int,
        default=1)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the predict result.',
        type=str,
        default='./output')
    parser.add_argument(
        '--device',
        choices=['cpu', 'gpu'],
        default="gpu",
        help="Select which device to inference, defaults to gpu.")

    parser.add_argument(
        '--use_trt',
        default=False,
        type=eval,
        choices=[True, False],
        help='Whether to use Nvidia TensorRT to accelerate prediction.')
    parser.add_argument(
        "--precision",
        default="fp32",
        type=str,
        choices=["fp32", "fp16", "int8"],
        help='The tensorrt precision.')
    parser.add_argument(
        '--enable_auto_tune',
        default=False,
        type=eval,
        choices=[True, False],
        help='Whether to enable tuned dynamic shape. We uses some images to collect '
        'the dynamic shape for trt sub graph, which avoids setting dynamic shape manually.'
    )
    parser.add_argument(
        '--auto_tuned_shape_file',
        type=str,
        default="auto_tune_tmp.pbtxt",
        help='The temp file to save tuned dynamic shape.')

    parser.add_argument(
        '--cpu_threads',
        default=10,
        type=int,
        help='Number of threads to predict when using cpu.')
    parser.add_argument(
        '--enable_mkldnn',
        default=False,
        type=eval,
        choices=[True, False],
        help='Enable to use mkldnn to speed up when using cpu.')

    parser.add_argument(
        "--benchmark",
        type=eval,
        default=False,
        help="Whether to log some information about environment, model, configuration and performance."
    )
    parser.add_argument(
        "--model_name",
        default="",
        type=str,
        help='When `--benchmark` is True, the specified model name is displayed.'
    )

    parser.add_argument(
        '--with_argmax',
        dest='with_argmax',
        help='Perform argmax operation on the predict result.',
        action='store_true')
    parser.add_argument(
        '--print_detail',
        default=True,
        type=eval,
        choices=[True, False],
        help='Print GLOG information of Paddle Inference.')

    parser.add_argument(
        '--use_swl',
        default=False,
        type=eval,
        help='use sliding_window_inference')

    parser.add_argument('--use_warmup', default=True, type=eval, help='warmup')

    parser.add_argument(
        '--img_shape',
        default=[128],
        nargs='+',
        help='"A single value or three values to specify the size in each dimension."'
    )

    parser.add_argument('--is_nhwd', default=True, type=eval, help='is_nhwd')
    return parser.parse_args()


def use_auto_tune(args):
    return hasattr(PredictConfig, "collect_shape_range_info") \
           and hasattr(PredictConfig, "enable_tuned_tensorrt_dynamic_shape") \
           and args.device == "gpu" and args.use_trt and args.enable_auto_tune


class DeployConfig:
    def __init__(self, path):
        with codecs.open(path, 'r', 'utf-8') as file:
            self.dic = yaml.load(file, Loader=yaml.FullLoader)

        self._transforms = self.load_transforms(self.dic['Deploy'][
            'transforms'])
        if self.dic['Deploy']['inference_helper'] is not None:
            self._inference_helper = self.load_inference_helper(self.dic[
                'Deploy']['inference_helper'])
        else:
            self._inference_helper = None
        self._dir = os.path.dirname(path)

    @property
    def transforms(self):
        return self._transforms

    @property
    def inference_helper(self):
        return self._inference_helper

    @property
    def model(self):
        return os.path.join(self._dir, self.dic['Deploy']['model'])

    @property
    def params(self):
        return os.path.join(self._dir, self.dic['Deploy']['params'])

    @staticmethod
    def load_transforms(t_list):
        com = manager.TRANSFORMS
        transforms = []
        for t in t_list:
            ctype = t.pop('type', None)
            if ctype is not None:
                transforms.append(com[ctype](**t))

        return T.Compose(transforms)

    @staticmethod
    def load_inference_helper(t):
        com = manager.INFERENCE_HELPERS
        inference_helper = None
        ctype = t.pop('type', None)
        if ctype is not None:
            inference_helper = com[ctype](**t)

        return inference_helper


def auto_tune(args, imgs, img_nums):
    """
    Use images to auto tune the dynamic shape for trt sub graph.
    The tuned shape saved in args.auto_tuned_shape_file.
    Args:
        args(dict): input args.
        imgs(str, list[str]): the path for images.
        img_nums(int): the nums of images used for auto tune.
    Returns:
        None
    """
    logger.info("Auto tune the dynamic shape for GPU TRT.")

    assert use_auto_tune(args)

    if not isinstance(imgs, (list, tuple)):
        imgs = [imgs]
    num = min(len(imgs), img_nums)

    cfg = DeployConfig(args.cfg)
    pred_cfg = PredictConfig(cfg.model, cfg.params)
    pred_cfg.enable_use_gpu(100, 0)
    if not args.print_detail:
        pred_cfg.disable_glog_info()
    pred_cfg.collect_shape_range_info(args.auto_tuned_shape_file)

    predictor = create_predictor(pred_cfg)
    input_names = predictor.get_input_names()
    input_handle = predictor.get_input_handle(input_names[0])

    for i in range(0, num):
        data = np.array([cfg.transforms(imgs[i])[0]])
        input_handle.reshape(data.shape)
        input_handle.copy_from_cpu(data)
        try:
            predictor.run()
        except:
            logger.info(
                "Auto tune fail. Usually, the error is out of GPU memory, "
                "because the model and image is too large. \n")
            del predictor
            if os.path.exists(args.auto_tuned_shape_file):
                os.remove(args.auto_tuned_shape_file)
            return

    logger.info("Auto tune success.\n")


class ModelLikeInfer:
    def __init__(self, input_handle, output_handle, predictor):
        self.input_handle = input_handle
        self.output_handle = output_handle
        self.predictor = predictor

    def infer_likemodel(self, input_handle, output_handle, predictor, data):
        input_handle.reshape(data.shape)
        input_handle.copy_from_cpu(data.numpy())
        predictor.run()
        return paddle.to_tensor(output_handle.copy_to_cpu())

    def infer_model(self, data):
        return (self.infer_likemodel(self.input_handle, self.output_handle,
                                     self.predictor, data), )


class Predictor:
    def __init__(self, args):
        """
        Prepare for prediction.
        The usage and docs of paddle inference, please refer to
        https://paddleinference.paddlepaddle.org.cn/product_introduction/summary.html
        """
        self.args = args
        self.cfg = DeployConfig(args.cfg)

        self._init_base_config()

        if args.device == 'cpu':
            self._init_cpu_config()
        else:
            self._init_gpu_config()

        self.predictor = create_predictor(self.pred_cfg)

        if hasattr(args, 'benchmark') and args.benchmark:
            import auto_log
            pid = os.getpid()
            self.autolog = auto_log.AutoLogger(
                model_name=args.model_name,
                model_precision=args.precision,
                batch_size=args.batch_size,
                data_shape="dynamic",
                save_path=None,
                inference_config=self.pred_cfg,
                pids=pid,
                process_name=None,
                gpu_ids=0,
                time_keys=[
                    'preprocess_time', 'inference_time', 'postprocess_time'
                ],
                warmup=0,
                logger=logger)

    def _init_base_config(self):
        "初始化基础配置"
        self.pred_cfg = PredictConfig(self.cfg.model, self.cfg.params)
        if not self.args.print_detail:
            self.pred_cfg.disable_glog_info()
        self.pred_cfg.enable_memory_optim()
        self.pred_cfg.switch_ir_optim(True)

    def _init_cpu_config(self):
        """
        Init the config for x86 cpu.
        """
        logger.info("Use CPU")
        self.pred_cfg.disable_gpu()
        if self.args.enable_mkldnn:
            logger.info("Use MKLDNN")
            # cache 10 different shapes for mkldnn
            self.pred_cfg.set_mkldnn_cache_capacity(10)
            self.pred_cfg.enable_mkldnn()
        self.pred_cfg.set_cpu_math_library_num_threads(self.args.cpu_threads)

    def _init_gpu_config(self):
        """
        Init the config for nvidia gpu.
        """
        logger.info("Use GPU")
        self.pred_cfg.enable_use_gpu(100, 0)
        precision_map = {
            "fp16": PrecisionType.Half,
            "fp32": PrecisionType.Float32,
            "int8": PrecisionType.Int8
        }
        precision_mode = precision_map[self.args.precision]

        if self.args.use_trt:
            logger.info("Use TRT")
            self.pred_cfg.enable_tensorrt_engine(
                workspace_size=1 << 30,
                max_batch_size=1,
                min_subgraph_size=300,
                precision_mode=precision_mode,
                use_static=False,
                use_calib_mode=False)

            if use_auto_tune(self.args) and \
                    os.path.exists(self.args.auto_tuned_shape_file):
                logger.info("Use auto tuned dynamic shape")
                allow_build_at_runtime = True
                self.pred_cfg.enable_tuned_tensorrt_dynamic_shape(
                    self.args.auto_tuned_shape_file, allow_build_at_runtime)
            else:
                logger.info("Use manual set dynamic shape")
                min_input_shape = {"x": [1, 3, 100, 100]}
                max_input_shape = {"x": [1, 3, 2000, 3000]}
                opt_input_shape = {"x": [1, 3, 512, 1024]}
                self.pred_cfg.set_trt_dynamic_shape_info(
                    min_input_shape, max_input_shape, opt_input_shape)

    def run(self, imgs_path):
        if not isinstance(imgs_path, (list, tuple)):
            imgs_path = [imgs_path]

        input_names = self.predictor.get_input_names()
        input_handle = self.predictor.get_input_handle(input_names[0])
        output_names = self.predictor.get_output_names()
        output_handle = self.predictor.get_output_handle(output_names[0])
        results = []
        args = self.args

        if not os.path.exists(args.save_dir):
            os.makedirs(args.save_dir)

        for i in range(0, len(imgs_path), args.batch_size):

            if args.use_warmup:
                # warm up
                if i == 0 and args.benchmark:
                    for j in range(5):
                        if self.cfg.inference_helper is not None:
                            data = self.cfg.inference_helper.preprocess(
                                self.cfg, imgs_path, args.batch_size, 0)
                        else:
                            data = np.array([
                                self._preprocess(img)  # load from original
                                for img in imgs_path[0:args.batch_size]
                            ])
                        input_handle.reshape(data.shape)
                        input_handle.copy_from_cpu(data)
                        self.predictor.run()
                        results = output_handle.copy_to_cpu()
                        results = self._postprocess(results)

            # inference
            if args.benchmark:
                self.autolog.times.start()
            if self.cfg.inference_helper is not None:
                data = self.cfg.inference_helper.preprocess(self.cfg, imgs_path,
                                                            args.batch_size, i)
            else:
                data = np.array([
                    self._preprocess(p)
                    for p in imgs_path[i:i + args.batch_size]
                ])

            if args.benchmark:
                self.autolog.times.stamp()

            if args.use_swl:

                infer_like_model = ModelLikeInfer(input_handle, output_handle,
                                                  self.predictor)
                data = paddle.to_tensor(data)
                if args.is_nhwd:
                    data = paddle.squeeze(data, axis=1)

                if len(args.img_shape) == 1:
                    results = sliding_window_inference(
                        data, (int(args.img_shape[0]), int(args.img_shape[0]),
                               int(args.img_shape[0])), 1,
                        infer_like_model.infer_model)
                else:
                    results = sliding_window_inference(
                        data, (int(args.img_shape[0]), int(args.img_shape[1]),
                               int(args.img_shape[2])), 1,
                        infer_like_model.infer_model, "NCDHW")

                results = results[0]

            else:
                input_handle.reshape(data.shape)
                input_handle.copy_from_cpu(data)

                self.predictor.run()

                results = output_handle.copy_to_cpu()

            if args.benchmark:
                self.autolog.times.stamp()
            if self.cfg.inference_helper is not None:
                results = self.cfg.inference_helper.postprocess(results)
            else:
                results = self._postprocess(results)

            if args.benchmark:
                self.autolog.times.end(stamp=True)
            self._save_npy(results, imgs_path[i:i + args.batch_size])
        logger.info("Finish")

    def _preprocess(self, img):
        """load img and transform it
        Args:
        Img(str): A batch of image path
        """
        if not "npy" in img:
            image_files = get_image_list(img, None, None)
            warnings.warn(
                "The image path is {}, please make sure this is the images you want to infer".
                format(image_files))
            savepath = os.path.dirname(img)
            pre = [
                HUnorm,
                functools.partial(
                    resample,  # TODO: config preprocess in deply.yaml(export) to set params
                    new_shape=[128, 128, 128],
                    order=1)
            ]

            for f in image_files:
                f_nps = Prep.load_medical_data(f)
                for f_np in f_nps:
                    if pre is not None:
                        for op in pre:
                            f_np = op(f_np)

                    # Set image to a uniform format before save.
                    if isinstance(f_np, tuple):
                        f_np = f_np[0]
                    f_np = f_np.astype("float32")

                    np.save(
                        os.path.join(
                            savepath,
                            f.split("/")[-1].split(
                                ".", maxsplit=1)[0]),
                        f_np)

            img = img.split(".", maxsplit=1)[0] + ".npy"
        return self.cfg.transforms(img)[0]

    def _postprocess(self, results):
        "results is numpy array, optionally postprocess with argmax"
        if self.args.with_argmax:
            results = np.argmax(results, axis=1)
        return results

    def _save_npy(self, results, imgs_path):
        for i in range(results.shape[0]):
            basename = os.path.basename(imgs_path[i])
            basename, _ = os.path.splitext(basename)
            basename = f'{basename}.npy'
            np.save(os.path.join(self.args.save_dir, basename), results)


def main(args):
    imgs_list = get_image_list(
        args.image_path)  # get image list from image path

    # support autotune to collect dynamic shape, works only with trt on.
    if use_auto_tune(args):
        tune_img_nums = 10
        auto_tune(args, imgs_list, tune_img_nums)

    # infer with paddle inference.
    predictor = Predictor(args)
    predictor.run(imgs_list)

    if use_auto_tune(args) and \
            os.path.exists(args.auto_tuned_shape_file):
        os.remove(args.auto_tuned_shape_file)

    # test the speed.
    if args.benchmark:
        predictor.autolog.report()


if __name__ == '__main__':
    args = parse_args()
    main(args)