val.py 3.77 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import paddle

from paddleseg.cvlibs import manager, Config
from core import evaluate
from paddleseg.utils import get_sys_env, logger, utils
from datasets import tusimple


def get_test_config(cfg, args):

    test_config = cfg.test_config
    return test_config


def parse_args():
    parser = argparse.ArgumentParser(description='Model evaluation')

    # params of evaluate
    parser.add_argument(
        "--config", dest="cfg", help="The config file.", default=None, type=str)
    parser.add_argument(
        '--model_path',
        dest='model_path',
        help='The path of model for evaluation',
        type=str,
        default=None)
    parser.add_argument(
        '--num_workers',
        dest='num_workers',
        help='Num workers for data loader',
        type=int,
        default=0)

    parser.add_argument(
        '--data_format',
        dest='data_format',
        help='Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW".',
        type=str,
        default='NCHW')

    parser.add_argument(
        '--is_view',
        dest='is_view',
        help='Whether to visualize results.',
        type=str,
        default=False)

    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the predicted results',
        type=str,
        default='./output/result')

    return parser.parse_args()


def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    cfg.check_sync_info()
    # Only support for the DeepLabv3+ model
    if args.data_format == 'NHWC':
        if cfg.dic['model']['type'] != 'DeepLabV3P':
            raise ValueError(
                'The "NHWC" data format only support the DeepLabV3P model!')
        cfg.dic['model']['data_format'] = args.data_format
        cfg.dic['model']['backbone']['data_format'] = args.data_format
        loss_len = len(cfg.dic['loss']['types'])
        for i in range(loss_len):
            cfg.dic['loss']['types'][i]['data_format'] = args.data_format

    val_dataset = cfg.val_dataset
    if val_dataset is None:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )
    elif len(val_dataset) == 0:
        raise ValueError(
            'The length of val_dataset is 0. Please check if your dataset is valid'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    if args.model_path:
        utils.load_entire_model(model, args.model_path)
        logger.info('Loaded trained params of model successfully')

    test_config = get_test_config(cfg, args)

    evaluate(
        model,
        val_dataset,
        num_workers=args.num_workers,
        is_view=args.is_view,
        save_dir=args.save_dir,
        **test_config)


if __name__ == '__main__':
    args = parse_args()
    main(args)