lane.py 4.94 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# this code is from https://github.com/TuSimple/tusimple-benchmark/blob/master/evaluate/lane.py

import json as json
import numpy as np
from sklearn.linear_model import LinearRegression


class LaneEval(object):
    lr = LinearRegression()
    pixel_thresh = 20
    pt_thresh = 0.85

    @staticmethod
    def get_angle(xs, y_samples):
        xs, ys = xs[xs >= 0], y_samples[xs >= 0]
        if len(xs) > 1:
            LaneEval.lr.fit(ys[:, None], xs)
            k = LaneEval.lr.coef_[0]
            theta = np.arctan(k)
        else:
            theta = 0
        return theta

    @staticmethod
    def line_accuracy(pred, gt, thresh):
        pred = np.array([p if p >= 0 else -100 for p in pred])
        gt = np.array([g if g >= 0 else -100 for g in gt])
        return np.sum(np.where(np.abs(pred - gt) < thresh, 1., 0.)) / len(gt)

    @staticmethod
    def bench(pred, gt, y_samples, running_time):
        if any(len(p) != len(y_samples) for p in pred):
            raise Exception('Format of lanes error.')
        if running_time > 200 or len(gt) + 2 < len(pred):
            return 0., 0., 1.
        angles = [
            LaneEval.get_angle(np.array(x_gts), np.array(y_samples))
            for x_gts in gt
        ]
        threshs = [LaneEval.pixel_thresh / np.cos(angle) for angle in angles]
        line_accs = []
        fp, fn = 0., 0.
        matched = 0.
        for x_gts, thresh in zip(gt, threshs):
            accs = [
                LaneEval.line_accuracy(
                    np.array(x_preds), np.array(x_gts), thresh)
                for x_preds in pred
            ]
            max_acc = np.max(accs) if len(accs) > 0 else 0.
            if max_acc < LaneEval.pt_thresh:
                fn += 1
            else:
                matched += 1
            line_accs.append(max_acc)
        fp = len(pred) - matched
        if len(gt) > 4 and fn > 0:
            fn -= 1
        s = sum(line_accs)
        if len(gt) > 4:
            s -= min(line_accs)
        return s / max(min(4.0, len(gt)),
                       1.), fp / len(pred) if len(pred) > 0 else 0., fn / max(
                           min(len(gt), 4.), 1.)

    @staticmethod
    def bench_one_submit(pred_file, gt_file):
        try:
            json_pred = [
                json.loads(line) for line in open(pred_file).readlines()
            ]
        except BaseException as e:
            raise Exception('Fail to load json file of the prediction.')
        json_gt = [json.loads(line) for line in open(gt_file).readlines()]
        if len(json_gt) != len(json_pred):
            raise Exception(
                'We do not get the predictions of all the test tasks')
        gts = {l['raw_file']: l for l in json_gt}
        accuracy, fp, fn = 0., 0., 0.
        for pred in json_pred:
            if 'raw_file' not in pred or 'lanes' not in pred or 'run_time' not in pred:
                raise Exception(
                    'raw_file or lanes or run_time not in some predictions.')
            raw_file = pred['raw_file']
            pred_lanes = pred['lanes']
            run_time = pred['run_time']
            if raw_file not in gts:
                raise Exception(
                    'Some raw_file from your predictions do not exist in the test tasks.'
                )
            gt = gts[raw_file]
            gt_lanes = gt['lanes']
            y_samples = gt['h_samples']
            try:
                a, p, n = LaneEval.bench(pred_lanes, gt_lanes, y_samples,
                                         run_time)
            except BaseException as e:
                raise Exception('Format of lanes error.')
            accuracy += a
            fp += p
            fn += n
        num = len(gts)
        # the first return parameter is the default ranking parameter
        return json.dumps([{
            'name': 'Accuracy',
            'value': accuracy / num,
            'order': 'desc'
        }, {
            'name': 'FP',
            'value': fp / num,
            'order': 'asc'
        }, {
            'name': 'FN',
            'value': fn / num,
            'order': 'asc'
        }]), accuracy / num, fp / num, fn / num


if __name__ == '__main__':
    import sys

    try:
        if len(sys.argv) != 3:
            raise Exception('Invalid input arguments')
        print(LaneEval.bench_one_submit(sys.argv[1], sys.argv[2]))
    except Exception as e:
        print(e.message)
        sys.exit(e.message)