val.py 10.2 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import time
import tqdm
import numpy as np
from PIL import Image
import paddle
import paddle.nn.functional as F

from paddleseg.utils import metrics, TimeAverager, calculate_eta, logger, progbar
import datasets
from utils import save_imgs

np.set_printoptions(suppress=True)

np.seterr(divide='ignore', invalid='ignore')

# Names
name_classes = [
    'road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'trafflight',
    'traffsign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car',
    'truck', 'bus', 'train', 'motorcycle', 'bicycle', 'unlabeled'
]

synthia_set_16 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 15, 17, 18]
synthia_set_13 = [0, 1, 2, 6, 7, 8, 10, 11, 12, 13, 15, 17, 18]
synthia_set_16_to_13 = [0, 1, 2, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]


class Eval():
    def __init__(self, num_class):
        self.num_class = num_class
        self.confusion_matrix = np.zeros((self.num_class, ) * 2)
        self.ignore_index = None
        self.synthia = True if num_class == 16 else False

    def pixel_accuracy(self):
        if np.sum(self.confusion_matrix) == 0:
            print("Attention: pixel_total is zero!!!")
            PA = 0
        else:
            PA = np.diag(self.confusion_matrix).sum(
            ) / self.confusion_matrix.sum()

        return PA

    def mean_pixel_accuracy(self, out_16_13=False):
        MPA = np.diag(self.confusion_matrix) / self.confusion_matrix.sum(axis=1)
        if self.synthia:
            MPA_16 = np.nanmean(MPA[:self.ignore_index])
            MPA_13 = np.nanmean(MPA[synthia_set_16_to_13])
            return MPA_16, MPA_13
        if out_16_13:
            MPA_16 = np.nanmean(MPA[synthia_set_16])
            MPA_13 = np.nanmean(MPA[synthia_set_13])
            return MPA_16, MPA_13
        MPA = np.nanmean(MPA[:self.ignore_index])

        return MPA

    def mean_iou(self, out_16_13=False):
        MIoU = np.diag(self.confusion_matrix) / (
            np.sum(self.confusion_matrix, axis=1) + np.sum(
                self.confusion_matrix, axis=0) - np.diag(self.confusion_matrix))
        if self.synthia:
            MIoU_16 = np.nanmean(MIoU[:self.ignore_index])
            MIoU_13 = np.nanmean(MIoU[synthia_set_16_to_13])
            return MIoU_16, MIoU_13
        if out_16_13:
            MIoU_16 = np.nanmean(MIoU[synthia_set_16])
            MIoU_13 = np.nanmean(MIoU[synthia_set_13])
            return MIoU_16, MIoU_13
        MIoU = np.nanmean(MIoU[:self.ignore_index])

        return MIoU

    def fwiou(self, out_16_13=False):
        FWIoU = np.multiply(
            np.sum(self.confusion_matrix, axis=1),
            np.diag(self.confusion_matrix))
        FWIoU = FWIoU / (np.sum(self.confusion_matrix, axis=1) + np.sum(
            self.confusion_matrix, axis=0) - np.diag(self.confusion_matrix))
        if self.synthia:
            FWIoU_16 = np.sum(
                i for i in FWIoU
                if not np.isnan(i)) / np.sum(self.confusion_matrix)
            FWIoU_13 = np.sum(
                i for i in FWIoU[synthia_set_16_to_13]
                if not np.isnan(i)) / np.sum(self.confusion_matrix)
            return FWIoU_16, FWIoU_13
        if out_16_13:
            FWIoU_16 = np.sum(
                i for i in FWIoU[synthia_set_16]
                if not np.isnan(i)) / np.sum(self.confusion_matrix)
            FWIoU_13 = np.sum(
                i for i in FWIoU[synthia_set_13]
                if not np.isnan(i)) / np.sum(self.confusion_matrix)
            return FWIoU_16, FWIoU_13
        FWIoU = np.sum(i for i in FWIoU
                       if not np.isnan(i)) / np.sum(self.confusion_matrix)

        return FWIoU

    def mean_precision(self, out_16_13=False):
        Precision = np.diag(self.confusion_matrix) / self.confusion_matrix.sum(
            axis=0)
        if self.synthia:
            Precision_16 = np.nanmean(Precision[:self.ignore_index])
            Precision_13 = np.nanmean(Precision[synthia_set_16_to_13])
            return Precision_16, Precision_13
        if out_16_13:
            Precision_16 = np.nanmean(Precision[synthia_set_16])
            Precision_13 = np.nanmean(Precision[synthia_set_13])
            return Precision_16, Precision_13
        Precision = np.nanmean(Precision[:self.ignore_index])
        return Precision

    def print_every_class_eval(self, out_16_13=False, logger=None):
        MIoU = np.diag(self.confusion_matrix) / (
            np.sum(self.confusion_matrix, axis=1) + np.sum(
                self.confusion_matrix, axis=0) - np.diag(self.confusion_matrix))
        MPA = np.diag(self.confusion_matrix) / self.confusion_matrix.sum(axis=1)
        Precision = np.diag(self.confusion_matrix) / self.confusion_matrix.sum(
            axis=0)
        Class_ratio = np.sum(self.confusion_matrix,
                             axis=1) / np.sum(self.confusion_matrix)
        Pred_retio = np.sum(self.confusion_matrix,
                            axis=0) / np.sum(self.confusion_matrix)
        log_fn = print if logger is None else logger.info
        log_fn('===>Everyclass:\t' + 'MPA\t' + 'MIoU\t' + 'PC\t' + 'Ratio\t' +
               'Pred_Retio')
        # if out_16_13: MIoU = MIoU[synthia_set_16]
        for ind_class in range(len(MIoU)):
            pa = str(round(MPA[ind_class] * 100, 2)) if not np.isnan(MPA[
                ind_class]) else 'nan'
            iou = str(round(MIoU[ind_class] * 100, 2)) if not np.isnan(MIoU[
                ind_class]) else 'nan'
            pc = str(round(Precision[ind_class] * 100, 2)) if not np.isnan(
                Precision[ind_class]) else 'nan'
            cr = str(round(Class_ratio[ind_class] * 100, 2)) if not np.isnan(
                Class_ratio[ind_class]) else 'nan'
            pr = str(round(Pred_retio[ind_class] * 100, 2)) if not np.isnan(
                Pred_retio[ind_class]) else 'nan'
            log_fn('===>' + name_classes[ind_class] + ':\t' + pa + '\t' + iou +
                   '\t' + pc + '\t' + cr + '\t' + pr)

    # generate confusion matrix
    def __generate_matrix(self, gt_image, pre_image):

        mask = (gt_image >= 0) & (gt_image < self.num_class)
        label = self.num_class * gt_image[mask].astype('int') + pre_image[mask]
        count = np.bincount(label, minlength=self.num_class**2)
        confusion_matrix = count.reshape(self.num_class, self.num_class)
        return confusion_matrix

    def add_batch(self, gt_image, pre_image):
        # assert the size of two images are same
        assert gt_image.shape == pre_image.shape
        self.confusion_matrix += self.__generate_matrix(gt_image, pre_image)

    def reset(self):
        self.confusion_matrix = np.zeros((self.num_class, ) * 2)


def evaluate(model,
             eval_dataset,
             num_workers=0,
             print_detail=True,
             save_img=True):
    """
    Launch evalution.

    Args:
        model(nn.Layer): A sementic segmentation model.
        eval_dataset (paddle.io.Dataset): Used to read and process validation datasets.
        num_workers (int, optional): Num workers for data loader. Default: 0.
        print_detail (bool, optional): Whether to print detailed information about the evaluation process. Default: True.

    Returns:
        float: The mIoU of validation datasets.
        float: The accuracy of validation datasets.
    """
    logger.info('Validating')
    evaluator = Eval(eval_dataset.NUM_CLASSES)
    evaluator.reset()

    model.eval()

    nranks = paddle.distributed.ParallelEnv().nranks
    local_rank = paddle.distributed.ParallelEnv().local_rank
    if nranks > 1:
        # Initialize parallel environment if not done.
        if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
        ):
            paddle.distributed.init_parallel_env()

    batch_sampler = paddle.io.DistributedBatchSampler(
        eval_dataset, batch_size=1, shuffle=False, drop_last=True)
    loader = paddle.io.DataLoader(
        eval_dataset,
        batch_sampler=batch_sampler,
        num_workers=num_workers,
        return_list=True, )

    progbar_val = progbar.Progbar(
        target=len(loader), verbose=0 if nranks < 2 else 2)

    reader_cost_averager = TimeAverager()
    batch_cost_averager = TimeAverager()
    batch_start = time.time()

    with paddle.no_grad():
        for idx, (x, y, _, item) in enumerate(loader):
            reader_cost_averager.record(time.time() - batch_start)

            # Forward
            y = y.astype('int64')
            pred = model(x)  # 1, c, h, w
            if len(pred) > 1:
                pred = pred[0]

            # Convert to numpy
            label = y.squeeze(axis=1).numpy()  #
            argpred = np.argmax(pred.numpy(), axis=1)  # 1, 1, H, W
            if save_img:
                save_imgs(argpred, item, './output/')

            # Add to evaluator
            evaluator.add_batch(label, argpred)

            batch_cost_averager.record(
                time.time() - batch_start, num_samples=len(label))
            batch_cost = batch_cost_averager.get_average()
            reader_cost = reader_cost_averager.get_average()

            if local_rank == 0 and print_detail and idx % 10 == 0:
                progbar_val.update(idx + 1, [('batch_cost', batch_cost),
                                             ('reader cost', reader_cost)])
            reader_cost_averager.reset()
            batch_cost_averager.reset()
            batch_start = time.time()

        PA = evaluator.pixel_accuracy()
        MPA = evaluator.mean_pixel_accuracy()
        MIoU = evaluator.mean_iou()
        FWIoU = evaluator.fwiou()
        PC = evaluator.mean_precision()
        logger.info(
            'PA1:{:.3f}, MPA1:{:.3f}, MIoU1:{:.3f}, FWIoU1:{:.3f}, PC:{:.3f}'.
            format(PA, MPA, MIoU, FWIoU, PC))

    return PA, MPA, MIoU, FWIoU