predict.py 4.99 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import paddle

from paddleseg.cvlibs import manager, Config
from paddleseg.utils import get_sys_env, logger, get_image_list
from paddleseg.core import predict
import datasets, models


def parse_args():
    parser = argparse.ArgumentParser(description='Model prediction')

    # params of prediction
    parser.add_argument(
        "--config", dest="cfg", help="The config file.", default=None, type=str)
    parser.add_argument(
        '--model_path',
        dest='model_path',
        help='The path of model for prediction',
        type=str,
        default=None)
    parser.add_argument(
        '--image_path',
        dest='image_path',
        help='The image to predict, which can be a path of image, or a file list containing image paths, or a directory including images',
        type=str,
        default=None)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the predicted results',
        type=str,
        default='./output/result')

    # augment for prediction
    parser.add_argument(
        '--aug_pred',
        dest='aug_pred',
        help='Whether to use mulit-scales and flip augment for prediction',
        action='store_true')
    parser.add_argument(
        '--scales',
        dest='scales',
        nargs='+',
        help='Scales for augment',
        type=float,
        default=1.0)
    parser.add_argument(
        '--flip_horizontal',
        dest='flip_horizontal',
        help='Whether to use flip horizontally augment',
        action='store_true')
    parser.add_argument(
        '--flip_vertical',
        dest='flip_vertical',
        help='Whether to use flip vertically augment',
        action='store_true')

    # sliding window prediction
    parser.add_argument(
        '--is_slide',
        dest='is_slide',
        help='Whether to prediction by sliding window',
        action='store_true')
    parser.add_argument(
        '--crop_size',
        dest='crop_size',
        nargs=2,
        help='The crop size of sliding window, the first is width and the second is height.',
        type=int,
        default=None)
    parser.add_argument(
        '--stride',
        dest='stride',
        nargs=2,
        help='The stride of sliding window, the first is width and the second is height.',
        type=int,
        default=None)

    # custom color map
    parser.add_argument(
        '--custom_color',
        dest='custom_color',
        nargs='+',
        help='Save images with a custom color map. Default: None, use paddleseg\'s default color map.',
        type=int,
        default=None)
    return parser.parse_args()


def get_test_config(cfg, args):

    test_config = cfg.test_config
    if args.aug_pred:
        test_config['aug_pred'] = args.aug_pred
        test_config['scales'] = args.scales

    if args.flip_horizontal:
        test_config['flip_horizontal'] = args.flip_horizontal

    if args.flip_vertical:
        test_config['flip_vertical'] = args.flip_vertical

    if args.is_slide:
        test_config['is_slide'] = args.is_slide
        test_config['crop_size'] = args.crop_size
        test_config['stride'] = args.stride

    if args.custom_color:
        test_config['custom_color'] = args.custom_color

    return test_config


def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    cfg.check_sync_info()
    val_dataset = cfg.val_dataset
    if not val_dataset:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    transforms = val_dataset.transforms
    image_list, image_dir = get_image_list(args.image_path)
    logger.info('Number of predict images = {}'.format(len(image_list)))

    test_config = get_test_config(cfg, args)

    predict(
        model,
        model_path=args.model_path,
        transforms=transforms,
        image_list=image_list,
        image_dir=image_dir,
        save_dir=args.save_dir,
        **test_config)


if __name__ == '__main__':
    args = parse_args()
    main(args)