val.py 7.33 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import numpy as np
import time
import paddle
import paddle.nn.functional as F

from paddleseg.utils import metrics, TimeAverager, calculate_eta, logger, progbar
from core import infer

np.set_printoptions(suppress=True)


def evaluate(model,
             eval_dataset,
             aug_eval=False,
             scales=1.0,
             flip_horizontal=True,
             flip_vertical=False,
             is_slide=False,
             stride=None,
             crop_size=None,
             num_workers=0,
             print_detail=True):
    """
    Launch evalution.

    Args:
        model(nn.Layer): A sementic segmentation model.
        eval_dataset (paddle.io.Dataset): Used to read and process validation datasets.
        aug_eval (bool, optional): Whether to use mulit-scales and flip augment for evaluation. Default: False.
        scales (list|float, optional): Scales for augment. It is valid when `aug_eval` is True. Default: 1.0.
        flip_horizontal (bool, optional): Whether to use flip horizontally augment. It is valid when `aug_eval` is True. Default: True.
        flip_vertical (bool, optional): Whether to use flip vertically augment. It is valid when `aug_eval` is True. Default: False.
        is_slide (bool, optional): Whether to evaluate by sliding window. Default: False.
        stride (tuple|list, optional): The stride of sliding window, the first is width and the second is height.
            It should be provided when `is_slide` is True.
        crop_size (tuple|list, optional):  The crop size of sliding window, the first is width and the second is height.
            It should be provided when `is_slide` is True.
        num_workers (int, optional): Num workers for data loader. Default: 0.
        print_detail (bool, optional): Whether to print detailed information about the evaluation process. Default: True.

    Returns:
        float: The mIoU of validation datasets.
        float: The accuracy of validation datasets.
    """
    model.eval()
    nranks = paddle.distributed.ParallelEnv().nranks
    local_rank = paddle.distributed.ParallelEnv().local_rank
    if nranks > 1:
        # Initialize parallel environment if not done.
        if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
        ):
            paddle.distributed.init_parallel_env()
    batch_sampler = paddle.io.DistributedBatchSampler(
        eval_dataset, batch_size=1, shuffle=False, drop_last=False)
    loader = paddle.io.DataLoader(
        eval_dataset,
        batch_sampler=batch_sampler,
        num_workers=num_workers,
        return_list=True, )

    total_iters = len(loader)
    intersect_area_all = 0
    pred_area_all = 0
    label_area_all = 0

    if print_detail:
        logger.info("Start evaluating (total_samples={}, total_iters={})...".
                    format(len(eval_dataset), total_iters))
    progbar_val = progbar.Progbar(target=total_iters, verbose=1)
    reader_cost_averager = TimeAverager()
    batch_cost_averager = TimeAverager()
    batch_start = time.time()
    with paddle.no_grad():
        for iter, data in enumerate(loader):
            (im, label) = data
            reader_cost_averager.record(time.time() - batch_start)
            label = label.astype('int64')

            ori_shape = label.shape[-2:]
            if aug_eval:
                pred = infer.aug_inference(
                    model,
                    im,
                    ori_shape=ori_shape,
                    transforms=eval_dataset.transforms.transforms,
                    scales=scales,
                    flip_horizontal=flip_horizontal,
                    flip_vertical=flip_vertical,
                    is_slide=is_slide,
                    stride=stride,
                    crop_size=crop_size)
            else:
                pred = infer.inference(
                    model,
                    im,
                    ori_shape=ori_shape,
                    transforms=eval_dataset.transforms.transforms,
                    is_slide=is_slide,
                    stride=stride,
                    crop_size=crop_size)

            intersect_area, pred_area, label_area = metrics.calculate_area(
                pred,
                label,
                eval_dataset.num_classes,
                ignore_index=eval_dataset.ignore_index)

            # Gather from all ranks
            if nranks > 1:
                intersect_area_list = []
                pred_area_list = []
                label_area_list = []
                paddle.distributed.all_gather(intersect_area_list,
                                              intersect_area)
                paddle.distributed.all_gather(pred_area_list, pred_area)
                paddle.distributed.all_gather(label_area_list, label_area)

                # Some image has been evaluated and should be eliminated in last iter
                if (iter + 1) * nranks > len(eval_dataset):
                    valid = len(eval_dataset) - iter * nranks
                    intersect_area_list = intersect_area_list[:valid]
                    pred_area_list = pred_area_list[:valid]
                    label_area_list = label_area_list[:valid]

                for i in range(len(intersect_area_list)):
                    intersect_area_all = intersect_area_all + intersect_area_list[
                        i]
                    pred_area_all = pred_area_all + pred_area_list[i]
                    label_area_all = label_area_all + label_area_list[i]
            else:
                intersect_area_all = intersect_area_all + intersect_area
                pred_area_all = pred_area_all + pred_area
                label_area_all = label_area_all + label_area
            batch_cost_averager.record(
                time.time() - batch_start, num_samples=len(label))
            batch_cost = batch_cost_averager.get_average()
            reader_cost = reader_cost_averager.get_average()

            if local_rank == 0 and print_detail:
                progbar_val.update(iter + 1, [('batch_cost', batch_cost),
                                              ('reader cost', reader_cost)])
            reader_cost_averager.reset()
            batch_cost_averager.reset()
            batch_start = time.time()

    class_iou, miou = metrics.mean_iou(intersect_area_all, pred_area_all,
                                       label_area_all)
    class_acc, acc = metrics.accuracy(intersect_area_all, pred_area_all)
    kappa = metrics.kappa(intersect_area_all, pred_area_all, label_area_all)

    if print_detail:
        logger.info("[EVAL] #Images={} mIoU={:.4f} Acc={:.4f} Kappa={:.4f} ".
                    format(len(eval_dataset), miou, acc, kappa))
        logger.info("[EVAL] Class IoU: \n" + str(np.round(class_iou, 4)))
        logger.info("[EVAL] Class Acc: \n" + str(np.round(class_acc, 4)))
    return miou, acc