README_EN.md 26.7 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
English | [简体中文](README_CN.md)

<div align="center">

<p align="center">
  <img src="./docs/images/paddleseg_logo.png" align="middle" width = "500" />
</p>

**A High-Efficient Development Toolkit for Image Segmentation based on [PaddlePaddle](https://github.com/paddlepaddle/paddle).**

[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
[![Version](https://img.shields.io/github/release/PaddlePaddle/PaddleSeg.svg)](https://github.com/PaddlePaddle/PaddleSeg/releases)
![python version](https://img.shields.io/badge/python-3.6+-orange.svg)
![support os](https://img.shields.io/badge/os-linux%2C%20win%2C%20mac-yellow.svg)
![stars](https://img.shields.io/github/stars/PaddlePaddle/PaddleSeg?color=ccf)

</div>


<div align="center">
<img src="https://github.com/shiyutang/files/blob/9590ea6bfc36139982ce75b00d3b9f26713934dd/teasor.gif"  width = "800" />  
</div>

## <img src="./docs/images/seg_news_icon.png" width="20"/> News
<ul class="nobull">
    <li>[2022-11-30] :fire: PaddleSeg v2.7 is released! More details in <a href="https://github.com/PaddlePaddle/PaddleSeg/releases">Release Notes</a>.</li>
    <ul>
        <li>Release <a href="./Matting/">PP-MattingV2</a>, a real-time human matting model with SOTA performance. Compared to previous models, the mean error is reduced by 17.91%, the inference speed is accelerated by 44.6% on GPU. </li>
        <li>Release <a href="./contrib/MedicalSeg/">MedicalSegV2</a>, a superior 3D medical image segmentation solution, including an intelligent annotation toolkit called EISeg-Med3D, several state-of-the-art models and an optimized nnUNet-D with high performance.</li>
        <li>Release <a href="./configs/rtformer/">RTFormer</a>, a real-time semantic segmentation model accepted by NeurIPS 2022. RTFormer combines the advantages of CNN and Transformer modules, and it achieves SOTA trade-off between performance and efficiency on several datasets.</li>
    </ul>
  <li>[2022-07-20] PaddleSeg v2.6 released a real-time human segmentation SOTA solution <a href="./contrib/PP-HumanSeg">PP-HumanSegV2</a>,  a stable-version semi-automatic segmentation annotation <a href="./EISeg">EISeg v1.0</a>, a pseudo label pre-training method PSSL and the source code of PP-MattingV1. </li>
  <li>[2022-04-20] PaddleSeg v2.5 released a real-time semantic segmentation model <a href="./configs/pp_liteseg">PP-LiteSeg</a>, a trimap-free image matting model PP-MattingV1, and an easy-to-use solution for 3D medical image segmentation MedicalSegV1.</li>
  <li>[2022-01-20] We release PaddleSeg v2.4 with EISeg v0.4, and PP-HumanSegV1 including open-sourced dataset <a href="./contrib/PP-HumanSeg/paper.md#pp-humanseg14k-a-large-scale-teleconferencing-video-dataset">PP-HumanSeg14K</a>. </li>

</ul>


## <img src="https://user-images.githubusercontent.com/48054808/157795569-9fc77c85-732f-4870-9be0-99a7fe2cff27.png" width="20"/> Introduction

PaddleSeg is an end-to-end high-efficent development toolkit for image segmentation based on PaddlePaddle, which  helps both developers and researchers in the whole process of designing segmentation models, training models, optimizing performance and inference speed, and deploying models. A lot of well-trained models and various real-world applications in both industry and academia help users conveniently build hands-on experiences in image segmentation.

<div align="center">
<img src="https://github.com/shiyutang/files/raw/main/teasor_new.gif"  width = "800" />  
</div>


## <img src="./docs/images/feature.png" width="20"/> Features

* **High-Performance Model**: Following the state of the art segmentation methods and use the high-performance backbone, we provide 40+ models and 140+ high-quality pre-training models, which are better than other open-source implementations.

* **High Efficiency**: PaddleSeg provides multi-process asynchronous I/O, multi-card parallel training, evaluation, and other acceleration strategies, combined with the memory optimization function of the PaddlePaddle, which can greatly reduce the training overhead of the segmentation model, all this allowing developers to lower cost and more efficiently train image segmentation model.

* **Modular Design**: We desigin PaddleSeg with the modular design philosophy. Therefore, based on actual application scenarios, developers can assemble diversified training configurations with *data enhancement strategies*, *segmentation models*, *backbone networks*, *loss functions* and other different components to meet different performance and accuracy requirements.

* **Complete Flow**: PaddleSeg support image labeling, model designing, model training, model compression and model deployment. With the help of PaddleSeg, developers can easily finish all taskes.

<div align="center">
<img src="https://user-images.githubusercontent.com/14087480/176402154-390e5815-1a87-41be-9374-9139c632eb66.png" width = "800" />  
</div>

## <img src="./docs/images/chat.png" width="20"/> Community

* If you have any questions, suggestions and feature requests, please create an issues in [GitHub Issues](https://github.com/PaddlePaddle/PaddleSeg/issues).
* Welcome to scan the following QR code and join paddleseg wechat group to communicate with us.
<div align="center">
<img src="https://user-images.githubusercontent.com/48433081/174770518-e6b5319b-336f-45d9-9817-da12b1961fb1.jpg"  width = "200" />  
</div>


## <img src="./docs/images/model.png" width="20"/> Overview

<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Models</b>
      </td>
      <td colspan="2">
        <b>Components</b>
      </td>
      <td>
        <b>Special Cases</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <ul>
        <details><summary><b>Semantic Segmentation</b></summary>
          <ul>
 <li><a href="./configs/pp_liteseg">PP-LiteSeg</a> </li>
            <li><a href="./configs/deeplabv3p">DeepLabV3P</a> </li>
            <li><a href="./configs/ocrnet">OCRNet</a> </li>
            <li><a href="./configs/mobileseg">MobileSeg</a> </li>
            <li><a href="./configs/ann">ANN</a></li>
            <li><a href="./configs/attention_unet">Att U-Net</a></li>
            <li><a href="./configs/bisenetv1">BiSeNetV1</a></li>
            <li><a href="./configs/bisenet">BiSeNetV2</a></li>
            <li><a href="./configs/ccnet">CCNet</a></li>
            <li><a href="./configs/danet">DANet</a></li>
            <li><a href="./configs/ddrnet">DDRNet</a></li>
            <li><a href="./configs/decoupled_segnet">DecoupledSeg</a></li>
            <li><a href="./configs/deeplabv3">DeepLabV3</a></li>
            <li><a href="./configs/dmnet">DMNet</a></li>
            <li><a href="./configs/dnlnet">DNLNet</a></li>
            <li><a href="./configs/emanet">EMANet</a></li>
            <li><a href="./configs/encnet">ENCNet</a></li>
            <li><a href="./configs/enet">ENet</a></li>
            <li><a href="./configs/espnetv1">ESPNetV1</a></li>
            <li><a href="./configs/espnet">ESPNetV2</a></li>
            <li><a href="./configs/fastfcn">FastFCN</a></li>
            <li><a href="./configs/fastscnn">Fast-SCNN</a></li>
            <li><a href="./configs/gcnet">GCNet</a></li>
            <li><a href="./configs/ginet">GINet</a></li>
            <li><a href="./configs/glore">GloRe</a></li>
            <li><a href="./configs/gscnn">GSCNN</a></li>
            <li><a href="./configs/hardnet">HarDNet</a></li>
            <li><a href="./configs/fcn">HRNet-FCN</a></li>
            <li><a href="./configs/hrnet_w48_contrast">HRNet-Contrast</a></li>
            <li><a href="./configs/isanet">ISANet</a></li>
            <li><a href="./configs/pfpn">PFPNNet</a></li>
            <li><a href="./configs/pointrend">PointRend</a></li>
            <li><a href="./configs/portraitnet">PotraitNet</a></li>
            <li><a href="./configs/pp_humanseg_lite">PP-HumanSeg-Lite</a></li>
            <li><a href="./configs/pspnet">PSPNet</a></li>
            <li><a href="./configs/pssl">PSSL</a></li>
            <li><a href="./configs/segformer">SegFormer</a></li>
            <li><a href="./configs/segmenter">SegMenter</a></li>
            <li><a href="./configs/segmne">SegNet</a></li>
            <li><a href="./configs/setr">SETR</a></li>
            <li><a href="./configs/sfnet">SFNet</a></li>
            <li><a href="./configs/stdcseg">STDCSeg</a></li>
            <li><a href="./configs/u2net">U<sup>2</sup>Net</a></li>
            <li><a href="./configs/unet">UNet</a></li>
            <li><a href="./configs/unet_plusplus">UNet++</a></li>
            <li><a href="./configs/unet_3plus">UNet3+</a></li>
            <li><a href="./configs/upernet">UperNet</a></li>
            <li><a href="./configs/rtformer">RTFormer</a></li>
            <li><a href="./configs/uhrnet">UHRNet</a></li>
            <li><a href="./configs/topformer">TopFormer</a></li>
            <li><a href="./configs/mscale_ocrnet">MscaleOCRNet-PSA</a></li>
          </ul>
        </details>
        <details><summary><b>Interactive Segmentation</b></summary>
          <ul>
            <li><a href="./EISeg">EISeg</a></li>
            <li>RITM</li>
            <li>EdgeFlow</li>
          </ul>
        </details>
        <details><summary><b>Image Matting</b></summary>
          <ul>
              <li><a href="./Matting/configs/ppmattingv2">PP-MattingV2</a></li>
              <li><a href="./Matting/configs/ppmatting">PP-MattingV1</a></li>
              <li><a href="./Matting/configs/dim/dim-vgg16.yml">DIM</a></li>
              <li><a href="./Matting/configs/modnet/modnet-hrnet_w18.yml">MODNet</a></li>
              <li><a href="./Matting/configs/human_matting/human_matting-resnet34_vd.yml">PP-HumanMatting</a></li>
          </ul>
        </details>
        <details><summary><b>Panoptic Segmentation</b></summary>
          <ul>
            <li><a href="./contrib/PanopticDeepLab/README_CN.md">Panoptic-DeepLab</a></li>
          </ul>
        </details>
      </td>
      <td>
        <details><summary><b>Backbones</b></summary>
          <ul>
            <li><a href="./paddleseg/models/backbones/hrnet.py">HRNet</a></li>
            <li><a href="./paddleseg/models/backbones/resnet_cd.py">ResNet</a></li>
            <li><a href="./paddleseg/models/backbones/stdcnet.py">STDCNet</a></li>
            <li><a href="./paddleseg/models/backbones/mobilenetv2.py">MobileNetV2</a></li>
            <li><a href="./paddleseg/models/backbones/mobilenetv3.py">MobileNetV3</a></li>
            <li><a href="./paddleseg/models/backbones/shufflenetv2.py">ShuffleNetV2</a></li>
            <li><a href="./paddleseg/models/backbones/ghostnet.py">GhostNet</a></li>
            <li><a href="./paddleseg/models/backbones/lite_hrnet.py">LiteHRNet</a></li>
            <li><a href="./paddleseg/models/backbones/xception_deeplab.py">XCeption</a></li>
            <li><a href="./paddleseg/models/backbones/vision_transformer.py">VIT</a></li>
            <li><a href="./paddleseg/models/backbones/mix_transformer.py">MixVIT</a></li>
            <li><a href="./paddleseg/models/backbones/swin_transformer.py">Swin Transformer</a></li>
          </ul>
        </details>
        <details><summary><b>Losses</b></summary>
          <ul>
            <li><a href="./paddleseg/models/losses/binary_cross_entropy_loss.py">Binary CE Loss</a></li>
            <li><a href="./paddleseg/models/losses/bootstrapped_cross_entropy_loss.py">Bootstrapped CE Loss</a></li>
            <li><a href="./paddleseg/models/losses/cross_entropy_loss.py">Cross Entropy Loss</a></li>
            <li><a href="./paddleseg/models/losses/decoupledsegnet_relax_boundary_loss.py">Relax Boundary Loss</a></li>
            <li><a href="./paddleseg/models/losses/detail_aggregate_loss.py">Detail Aggregate Loss</a></li>
            <li><a href="./paddleseg/models/losses/dice_loss.py">Dice Loss</a></li>
            <li><a href="./paddleseg/models/losses/edge_attention_loss.py">Edge Attention Loss</a></li>
            <li><a href="./paddleseg/models/losses/focal_loss.py">Focal Loss</a></li>
            <li><a href="./paddleseg/models/losses/binary_cross_entropy_loss.py">MultiClassFocal Loss</a></li>
            <li><a href="./paddleseg/models/losses/gscnn_dual_task_loss.py">GSCNN Dual Task Loss</a></li>
            <li><a href="./paddleseg/models/losses/kl_loss.py">KL Loss</a></li>
            <li><a href="./paddleseg/models/losses/l1_loss.py">L1 Loss</a></li>
            <li><a href="./paddleseg/models/losses/lovasz_loss.py">Lovasz Loss</a></li>
            <li><a href="./paddleseg/models/losses/mean_square_error_loss.py">MSE Loss</a></li>
            <li><a href="./paddleseg/models/losses/ohem_cross_entropy_loss.py">OHEM CE Loss</a></li>
            <li><a href="./paddleseg/models/losses/pixel_contrast_cross_entropy_loss.py">Pixel Contrast CE Loss</a></li>
            <li><a href="./paddleseg/models/losses/point_cross_entropy_loss.py">Point CE Loss</a></li>
            <li><a href="./paddleseg/models/losses/rmi_loss.py">RMI Loss</a></li>
            <li><a href="./paddleseg/models/losses/semantic_connectivity_loss.py">Connectivity Loss</a></li>
          </ul>
        </details>
        <details><summary><b>Metrics</b></summary>
          <ul>
            <li>mIoU</li>
            <li>Accuracy</li>
            <li>Kappa</li>
            <li>Dice</li>
            <li>AUC_ROC</li>
          </ul>  
        </details>
      </td>
      <td>
        <details><summary><b>Datasets</b></summary>
          <ul>
            <li><a href="./paddleseg/datasets/ade.py">ADE20K</a></li>  
            <li><a href="./paddleseg/datasets/cityscapes.py">Cityscapes</a></li>
            <li><a href="./paddleseg/datasets/cocostuff.py">COCO Stuff</a></li>
            <li><a href="./paddleseg/datasets/voc.py">Pascal VOC</a></li>
            <li><a href="./paddleseg/datasets/eg1800.py">EG1800</a></li>
            <li><a href="./paddleseg/datasets/pascal_context.py">Pascal Context</a></li>  
            <li><a href="./paddleseg/datasets/supervisely.py">SUPERVISELY</a></li>
            <li><a href="./paddleseg/datasets/optic_disc_seg.py">OPTIC DISC SEG</a></li>
            <li><a href="./paddleseg/datasets/chase_db1.py">CHASE_DB1</a></li>
            <li><a href="./paddleseg/datasets/hrf.py">HRF</a></li>
            <li><a href="./paddleseg/datasets/drive.py">DRIVE</a></li>
            <li><a href="./paddleseg/datasets/stare.py">STARE</a></li>
            <li><a href="./paddleseg/datasets/pp_humanseg14k.py">PP-HumanSeg14K</a></li>
            <li><a href="./paddleseg/datasets/pssl.py">PSSL</a></li>
          </ul>
        </details>
        <details><summary><b>Data Augmentation</b></summary>
          <ul>
            <li>Flipping</li>  
            <li>Resize</li>  
            <li>ResizeByLong</li>
            <li>ResizeByShort</li>
            <li>LimitLong</li>  
            <li>ResizeRangeScaling</li>  
            <li>ResizeStepScaling</li>
            <li>Normalize</li>
            <li>Padding</li>
            <li>PaddingByAspectRatio</li>
            <li>RandomPaddingCrop</li>  
            <li>RandomCenterCrop</li>
            <li>ScalePadding</li>
            <li>RandomNoise</li>  
            <li>RandomBlur</li>  
            <li>RandomRotation</li>  
            <li>RandomScaleAspect</li>  
            <li>RandomDistort</li>  
            <li>RandomAffine</li>  
          </ul>
        </details>
      </td>
      <td>
        <details><summary><b>Model Selection Tool</b></summary>
          <ul>
              <li><a href="./configs/smrt">PaddleSMRT</a></li>
          </ul>
        </details>
        <details><summary><b>Human Segmentation</b></summary>
          <ul>
              <li><a href="./contrib/PP-HumanSeg/README_cn.md">PP-HumanSegV1</a></li>
              <li><a href="./contrib/PP-HumanSeg/README_cn.md">PP-HumanSegV2</a></li>
          </ul>
        </details>
        <details><summary><b>MedicalSeg</b></summary>
          <ul>
            <li><a href="./contrib/MedicalSeg/configs/lung_coronavirus">VNet</a></li>
            <li><a href="./contrib/MedicalSeg/configs/msd_brain_seg">UNETR</a></li>
            <li><a href="./contrib/MedicalSeg/configs/acdc">nnFormer</a></li>
            <li><a href="./contrib/MedicalSeg/configs/nnunet/msd_lung">nnUNet-D</a></li>
            <li><a href="./contrib/MedicalSeg/configs/synapse">TransUNet</a></li>
            <li><a href="./contrib/MedicalSeg/configs/synapse">SwinUNet</a></li>
          </ul>
        </details>
        <details><summary><b>Cityscapes SOTA Model</b></summary>
          <ul>
              <li><a href="./contrib/CityscapesSOTA">HMSA</a></li>
          </ul>
        </details>
        <details><summary><b>CVPR Champion Model</b></summary>
          <ul>
              <li><a href="./contrib/AutoNUE">MLA Transformer</a></li>
          </ul>
        </details>
        <details><summary><b>Domain Adaptation</b></summary>
          <ul>
              <li><a href="./contrib/DomainAdaptation">PixMatch</a></li>
          </ul>
        </details>
      </td>  
    </tr>
</td>
    </tr>
  </tbody>
</table>


## <img src="https://user-images.githubusercontent.com/48054808/157801371-9a9a8c65-1690-4123-985a-e0559a7f9494.png" width="20"/> Industrial Segmentation Models

<details>
<summary><b>High Accuracy Semantic Segmentation Models</b></summary>

#### These models have good performance and costly inference time, so they are designed for GPU and Jetson devices.

| Model    | Backbone | Cityscapes mIoU(%)    |  V100 TRT Inference Speed(FPS)  |  Config File |
|:-------- |:--------:|:---------------------:|:-------------------------------:|:------------:|
| FCN            | HRNet_W18        | 78.97                 | 24.43     | [yml](./configs/fcn/)         |
| FCN            | HRNet_W48        | 80.70                 | 10.16     | [yml](./configs/fcn/)         |
| DeepLabV3      | ResNet50_OS8     | 79.90                 | 4.56      | [yml](./configs/deeplabv3/)   |
| DeepLabV3      | ResNet101_OS8    | 80.85                 | 3.2       | [yml](./configs/deeplabv3/)   |
| DeepLabV3      | ResNet50_OS8     | 80.36                 | 6.58      | [yml](./configs/deeplabv3p/)  |
| DeepLabV3      | ResNet101_OS8    | 81.10                 | *3.94*    | [yml](./configs/deeplabv3p/)  |
| OCRNet :star2:      | HRNet_w18        | 80.67                 | 13.26     | [yml](./configs/ocrnet/)      |
| OCRNet         | HRNet_w48        | 82.15                 | 6.17      | [yml](./configs/ocrnet/)      |
| CCNet          | ResNet101_OS8    | 80.95                 | 3.24      | [yml](./configs/ccnet/)       |

Note that:
* Test the inference speed on Nvidia GPU V100: use PaddleInference Python API, enable TensorRT, the data type is FP32, the dimension of input is 1x3x1024x2048.

</details>


<details>
<summary><b>Lightweight Semantic Segmentation Models</b></summary>

#### The segmentation accuracy and inference speed of these models are medium. They can be deployed on GPU, X86 CPU and ARM CPU.

| Model    | Backbone | Cityscapes mIoU(%)    |  V100 TRT Inference Speed(FPS)  | Snapdragon 855 Inference Speed(FPS) | Config File |
|:-------- |:--------:|:---------------------:|:-------------------------------:|:-----------------:|:--------:|
| PP-LiteSeg :star2:      | STDC1         | 77.04               | 69.82           | 17.22       | [yml](./configs/pp_liteseg/)  |
| PP-LiteSeg :star2:      | STDC2         | 79.04               | 54.53           | 11.75       | [yml](./configs/pp_liteseg/)  |
| BiSeNetV1           | -             | 75.19               | 14.67           | 1.53      |[yml](./configs/bisenetv1/)  |
| BiSeNetV2           | -             | 73.19               | 61.83           | 13.67       |[yml](./configs/bisenet/)  |
| STDCSeg             | STDC1         | 74.74               | 62.24           | 14.51       |[yml](./configs/stdcseg/)  |
| STDCSeg             | STDC2         | 77.60               | 51.15           | 10.95       |[yml](./configs/stdcseg/)  |
| DDRNet_23           | -             | 79.85               | 42.64           | 7.68      |[yml](./configs/ddrnet/)  |
| HarDNet             | -             | 79.03               | 30.3            | 5.44      |[yml](./configs/hardnet/)  |
| SFNet               | ResNet18_OS8  |  78.72              | *10.72*         |   -         | [yml](./configs/sfnet/)  |

Note that:
* Test the inference speed on Nvidia GPU V100: use PaddleInference Python API, enable TensorRT, the data type is FP32, the dimension of input is 1x3x1024x2048.
* Test the inference speed on Snapdragon 855: use PaddleLite CPP API, 1 thread, the dimension of input is 1x3x256x256.

</details>


<details>
<summary><b>Super Lightweight Semantic Segmentation Models</b></summary>

#### These super lightweight semantic segmentation models are designed for X86 CPU and ARM CPU.

| Model    | Backbone | Cityscapes mIoU(%)    |  V100 TRT Inference Speed(FPS)  | Snapdragon 855 Inference Speed(FPS) | Config File |
|:-------- |:--------:|:---------------------:|:-------------------------------:|:-----------------------------------:|:-----------:|
| MobileSeg      | MobileNetV2              | 73.94                 | 67.57          | 27.01   | [yml](./configs/mobileseg/)  |
| MobileSeg :star2:  | MobileNetV3              | 73.47                 | 67.39          | 32.90   | [yml](./configs/mobileseg/)  |
| MobileSeg      | Lite_HRNet_18            | 70.75                 | *10.5*         | 13.05   | [yml](./configs/mobileseg/)  |
| MobileSeg      | ShuffleNetV2_x1_0        | 69.46                 | *37.09*        | 39.61  | [yml](./configs/mobileseg/)  |
| MobileSeg      | GhostNet_x1_0            | 71.88                 | *35.58*        | 38.74  | [yml](./configs/mobileseg/)  |

Note that:
* Test the inference speed on Nvidia GPU V100: use PaddleInference Python API, enable TensorRT, the data type is FP32, the dimension of input is 1x3x1024x2048.
* Test the inference speed on Snapdragon 855: use PaddleLite CPP API, 1 thread, the dimension of input is 1x3x256x256.

</details>


## <img src="./docs/images/teach.png" width="20"/> Tutorials

**Introductory Tutorials**

* [Installation](./docs/install.md)
* [Quick Start](./docs/quick_start.md)
* [A 20 minutes Blitz to Learn PaddleSeg](./docs/whole_process.md)
* [Model Zoo](./docs/model_zoo_overview.md)

**Basic Tutorials**

* Data Preparation
    * [Prepare Public Dataset](./docs/data/pre_data.md)
    * [Prepare Customized Dataset](./docs/data/marker/marker.md)
    * [Label Data with EISeg](./EISeg)
* [Config Preparation](./docs/config/pre_config.md)
* [Model Training](/docs/train/train.md)
* [Model Evaluation](./docs/evaluation/evaluate.md)
* [Model Prediction](./docs/predict/predict.md)

* Model Export
    * [Export Inference Model](./docs/model_export.md)
    * [Export ONNX Model](./docs/model_export_onnx.md)

* Model Deploy
    * [Paddle Inference (Python)](./docs/deployment/inference/python_inference.md)
    * [Paddle Inference (C++)](./docs/deployment/inference/cpp_inference.md)
    * [Paddle Lite](./docs/deployment/lite/lite.md)
    * [Paddle Serving](./docs/deployment/serving/serving.md)
    * [Paddle JS](./docs/deployment/web/web.md)
    * [Benchmark](./docs/deployment/inference/infer_benchmark.md)

**Advanced Tutorials**

* [Training Tricks](./docs/train/train_tricks.md)

*  Model Compression
    * [Quantization](./docs/deployment/slim/quant/quant.md)
    * [Distillation](./docs/deployment/slim/distill/distill.md)
    * [Prune](./docs/deployment/slim/prune/prune.md)

* [FAQ](./docs/faq/faq/faq.md)

**Welcome to Contribute**

* [API Documention](./docs/apis)

*  Advanced Development
    * [Detailed Configuration File](./docs/design/use/use.md)
    * [Create Your Own Model](./docs/design/create/add_new_model.md)
*  Pull Request
    * [PR Tutorial](./docs/pr/pr/pr.md)
    * [PR Style](./docs/pr/pr/style.md)

## <img src="./docs/images/anli.png" width="20"/> Special Features
  * [Interactive Segmentation](./EISeg)
  * [Image Matting](./Matting)
  * [PP-HumanSeg](./contrib/PP-HumanSeg)
  * [3D Medical Segmentation](./contrib/MedicalSeg)
  * [Cityscapes SOTA](./contrib/CityscapesSOTA)
  * [Panoptic Segmentation](./contrib/PanopticDeepLab)
  * [CVPR Champion Solution](./contrib/AutoNUE)
  * [Domain Adaptation](./contrib/DomainAdaptation)

## <img src="https://user-images.githubusercontent.com/48054808/157801371-9a9a8c65-1690-4123-985a-e0559a7f9494.png" width="20"/> Industrial Tutorial Examples

* [Using PP-HumanSegV2 for Human Segmentation](https://aistudio.baidu.com/aistudio/projectdetail/4504982?contributionType=1)
* [Using PP-HumanSegV1 for Human Segmentation](https://aistudio.baidu.com/aistudio/projectdetail/2189481?channelType=0&channel=0)
* [Using PP-LiteSeg for Road Segmentation](https://aistudio.baidu.com/aistudio/projectdetail/3873145?contributionType=1)
* [Using PaddleSeg for Mini-dataset Spine Segmentation](https://aistudio.baidu.com/aistudio/projectdetail/3878920)
* [Using PaddleSeg for Lane Segmentation](https://aistudio.baidu.com/aistudio/projectdetail/1752986?channelType=0&channel=0)
* [PaddleSeg in APIs](https://aistudio.baidu.com/aistudio/projectdetail/1339458?channelType=0&channel=0)
* [Learn Paddleseg in 10 Mins](https://aistudio.baidu.com/aistudio/projectdetail/1672610?channelType=0&channel=0)

## License

PaddleSeg is released under the [Apache 2.0 license](LICENSE).

## Acknowledgement
* Thanks [jm12138](https://github.com/jm12138) for contributing U<sup>2</sup>-Net.
* Thanks [zjhellofss](https://github.com/zjhellofss) (Fu Shenshen) for contributing Attention U-Net, and Dice Loss.
* Thanks [liuguoyu666](https://github.com/liguoyu666), [geoyee](https://github.com/geoyee) for contributing U-Net++ and U-Net3+.
* Thanks [yazheng0307](https://github.com/yazheng0307) (LIU Zheng) for contributing quick-start document.
* Thanks [CuberrChen](https://github.com/CuberrChen) for contributing STDC(rethink BiSeNet), PointRend and DetailAggregateLoss.
* Thanks [stuartchen1949](https://github.com/stuartchen1949) for contributing SegNet.
* Thanks [justld](https://github.com/justld) (Lang Du) for contributing UPerNet, DDRNet, CCNet, ESPNetV2, DMNet, ENCNet, HRNet_W48_Contrast, FastFCN, BiSeNetV1, SECrossEntropyLoss and PixelContrastCrossEntropyLoss.
* Thanks [Herman-Hu-saber](https://github.com/Herman-Hu-saber) (Hu Huiming) for contributing ESPNetV2.
* Thanks [zhangjin12138](https://github.com/zhangjin12138) for contributing RandomCenterCrop.
* Thanks [simuler](https://github.com/simuler) for contributing ESPNetV1.
* Thanks [ETTR123](https://github.com/ETTR123)(Zhang Kai) for contributing ENet, PFPNNet.

## Citation
If you find our project useful in your research, please consider citing:

```latex
@misc{liu2021paddleseg,
      title={PaddleSeg: A High-Efficient Development Toolkit for Image Segmentation},
      author={Yi Liu and Lutao Chu and Guowei Chen and Zewu Wu and Zeyu Chen and Baohua Lai and Yuying Hao},
      year={2021},
      eprint={2101.06175},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{paddleseg2019,
    title={PaddleSeg, End-to-end image segmentation kit based on PaddlePaddle},
    author={PaddlePaddle Contributors},
    howpublished = {\url{https://github.com/PaddlePaddle/PaddleSeg}},
    year={2019}
}
```