val.py 3.55 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import sys

LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(LOCAL_PATH, '..'))

import paddle
import paddleseg
from paddleseg.cvlibs import manager, Config
from paddleseg.utils import get_sys_env, logger, utils

manager.BACKBONES._components_dict.clear()
manager.TRANSFORMS._components_dict.clear()

import ppmatting
from ppmatting.core import evaluate, evaluate_ml


def parse_args():
    parser = argparse.ArgumentParser(description='Model training')
    parser.add_argument(
        "--config", dest="cfg", help="The config file.", default=None, type=str)
    parser.add_argument(
        '--model_path',
        dest='model_path',
        help='The path of model for evaluation',
        type=str,
        default=None)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the model snapshot',
        type=str,
        default='./output/results')
    parser.add_argument(
        '--num_workers',
        dest='num_workers',
        help='Num workers for data loader',
        type=int,
        default=0)
    parser.add_argument(
        '--save_results',
        dest='save_results',
        help='save prediction alpha while evaluating',
        action='store_true')
    parser.add_argument(
        '--metrics',
        dest='metrics',
        nargs='+',
        help='The metrics to evaluate, it may be the combination of ("sad", "mse", "grad", "conn")',
        type=str,
        default='sad')

    return parser.parse_args()


def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)
    val_dataset = cfg.val_dataset
    if val_dataset is None:
        raise RuntimeError(
            'The verification dataset is not specified in the configuration file.'
        )
    elif len(val_dataset) == 0:
        raise ValueError(
            'The length of val_dataset is 0. Please check if your dataset is valid'
        )

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model

    if isinstance(model, paddle.nn.Layer):

        if args.model_path:
            utils.load_entire_model(model, args.model_path)
            logger.info('Loaded trained params of model successfully')

        evaluate(
            model,
            val_dataset,
            num_workers=args.num_workers,
            save_dir=args.save_dir,
            save_results=args.save_results,
            metrics=args.metrics)
    else:

        evaluate_ml(
            model,
            val_dataset,
            save_dir=args.save_dir,
            save_results=args.save_results)


if __name__ == '__main__':
    args = parse_args()
    main(args)