predict.py 3.34 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import sys

import paddle
from paddleseg.cvlibs import manager, Config
from paddleseg.utils import get_sys_env, logger

LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(LOCAL_PATH, '..'))

manager.BACKBONES._components_dict.clear()
manager.TRANSFORMS._components_dict.clear()

import ppmatting
from ppmatting.core import predict
from ppmatting.utils import get_image_list


def parse_args():
    parser = argparse.ArgumentParser(description='Model training')
    parser.add_argument(
        "--config", dest="cfg", help="The config file.", default=None, type=str)

    parser.add_argument(
        '--model_path',
        dest='model_path',
        help='The path of model for prediction',
        type=str,
        default=None)
    parser.add_argument(
        '--image_path',
        dest='image_path',
        help='The path of image, it can be a file or a directory including images',
        type=str,
        default=None)
    parser.add_argument(
        '--trimap_path',
        dest='trimap_path',
        help='The path of trimap, it can be a file or a directory including images. '
        'The image should be the same as image when it is a directory.',
        type=str,
        default=None)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the model snapshot',
        type=str,
        default='./output/results')
    parser.add_argument(
        '--fg_estimate',
        default=True,
        type=eval,
        choices=[True, False],
        help='Whether to estimate foreground when predicting.')

    return parser.parse_args()


def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'

    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    transforms = ppmatting.transforms.Compose(cfg.val_transforms)

    image_list, image_dir = get_image_list(args.image_path)
    if args.trimap_path is None:
        trimap_list = None
    else:
        trimap_list, _ = get_image_list(args.trimap_path)
    logger.info('Number of predict images = {}'.format(len(image_list)))

    predict(
        model,
        model_path=args.model_path,
        transforms=transforms,
        image_list=image_list,
        image_dir=image_dir,
        trimap_list=trimap_list,
        save_dir=args.save_dir,
        fg_estimate=args.fg_estimate)


if __name__ == '__main__':
    args = parse_args()
    main(args)