semantic2instance.py 2.82 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import os.path as osp
import argparse
from tqdm import tqdm
import numpy as np
import cv2
from PIL import Image


def _savePalette(label, save_path):
    bin_colormap = np.random.randint(0, 255, (256, 3))  # 可视化的颜色
    bin_colormap[0, :] = [0, 0, 0]
    bin_colormap = bin_colormap.astype(np.uint8)
    visualimg = Image.fromarray(label, "P")
    palette = bin_colormap  # long palette of 768 items
    visualimg.putpalette(palette)
    visualimg.save(save_path, format='PNG')


def _segMaskB2I(mask_path, save_path):
    img = np.asarray(Image.open(mask_path))
    mask = np.zeros_like(img)
    results = cv2.findContours(img, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
    cv2_v = cv2.__version__.split(".")[0]
    contours = results[1] if cv2_v == "3" else results[0]  # 边界
    hierarchys = results[2] if cv2_v == "3" else results[1]  # 隶属信息
    areas = {}  # 面积
    for i in range(len(contours)):
        areas[i] = cv2.contourArea(contours[i])
    sorted(areas.items(), key=lambda kv: (kv[1], kv[0]), reverse=True)  # 面积升序
    # 开始填充
    color = 1
    for idx in areas.keys():
        contour = contours[idx]
        hierarchy = hierarchys[0][idx]
        # print(hierarchy)
        if hierarchy[-1] == -1:  # 输入子轮廓
            cv2.fillPoly(mask, [contour], color)
            color += 1
        else:
            cv2.fillPoly(mask, [contour], 0)
    # 显示
    # cv2.drawContours(mask, contours, -1, (125,125,125), 1)
    # cv2.imshow('src',mask)
    # cv2.waitKey()
    _savePalette(mask, save_path)


parser = argparse.ArgumentParser(description='Label path and save path')
parser.add_argument(
    '--label_path', '-o', help='读取语义分割标签文件夹路径,必要参数', required=True)
parser.add_argument(
    '--save_path', '-d', help='实例分割标签保存文件夹路径,必要参数', required=True)
args = parser.parse_args()

if __name__ == "__main__":
    label_path = args.label_path
    save_path = args.save_path
    names = os.listdir(label_path)
    for name in tqdm(names):
        label = osp.join(label_path, name)
        saver = osp.join(save_path, name)
        _segMaskB2I(label, saver)