rs_regularization.py 7.49 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/niecongchong/RS-building-regularization
Ths copyright of niecongchong/RS-building-regularization is as follows:
Apache License [see LICENSE for details]
"""

import cv2
import matplotlib.pyplot as plt
import numpy as np
from .rdp_alg import rdp
from .cal_point import cal_ang, cal_dist, cal_azimuth
from .rotate_ang import Nrotation_angle_get_coor_coordinates, Srotation_angle_get_coor_coordinates
from .cal_line import line, intersection, par_line_dist, point_in_line


def boundary_regularization(contours, img_shape, epsilon=6):
    h, w = img_shape[0:2]
    # 轮廓定位
    contours = np.squeeze(contours)
    # 轮廓精简DP
    contours = rdp(contours, epsilon=epsilon)
    contours[:, 1] = h - contours[:, 1]
    # 轮廓规则化
    dists = []
    azis = []
    azis_index = []
    # 获取每条边的长度和方位角
    for i in range(contours.shape[0]):
        cur_index = i
        next_index = i + 1 if i < contours.shape[0] - 1 else 0
        prev_index = i - 1
        cur_point = contours[cur_index]
        nest_point = contours[next_index]
        prev_point = contours[prev_index]
        dist = cal_dist(cur_point, nest_point)
        azi = cal_azimuth(cur_point, nest_point)
        dists.append(dist)
        azis.append(azi)
        azis_index.append([cur_index, next_index])
    # 以最长的边的方向作为主方向
    longest_edge_idex = np.argmax(dists)
    main_direction = azis[longest_edge_idex]
    # 方向纠正,绕中心点旋转到与主方向垂直或者平行
    correct_points = []
    para_vetr_idxs = []  # 0平行 1垂直
    for i, (azi, (point_0_index,
                  point_1_index)) in enumerate(zip(azis, azis_index)):
        if i == longest_edge_idex:
            correct_points.append(
                [contours[point_0_index], contours[point_1_index]])
            para_vetr_idxs.append(0)
        else:
            # 确定旋转角度
            rotate_ang = main_direction - azi
            if np.abs(rotate_ang) < 180 / 4:
                rotate_ang = rotate_ang
                para_vetr_idxs.append(0)
            elif np.abs(rotate_ang) >= 90 - 180 / 4:
                rotate_ang = rotate_ang + 90
                para_vetr_idxs.append(1)
            # 执行旋转任务
            point_0 = contours[point_0_index]
            point_1 = contours[point_1_index]
            point_middle = (point_0 + point_1) / 2
            if rotate_ang > 0:
                rotate_point_0 = Srotation_angle_get_coor_coordinates(
                    point_0, point_middle, np.abs(rotate_ang))
                rotate_point_1 = Srotation_angle_get_coor_coordinates(
                    point_1, point_middle, np.abs(rotate_ang))
            elif rotate_ang < 0:
                rotate_point_0 = Nrotation_angle_get_coor_coordinates(
                    point_0, point_middle, np.abs(rotate_ang))
                rotate_point_1 = Nrotation_angle_get_coor_coordinates(
                    point_1, point_middle, np.abs(rotate_ang))
            else:
                rotate_point_0 = point_0
                rotate_point_1 = point_1
            correct_points.append([rotate_point_0, rotate_point_1])
    correct_points = np.array(correct_points)
    # 相邻边校正,垂直取交点,平行平移短边或者加线
    final_points = []
    final_points.append(correct_points[0][0])
    for i in range(correct_points.shape[0] - 1):
        cur_index = i
        next_index = i + 1 if i < correct_points.shape[0] - 1 else 0
        cur_edge_point_0 = correct_points[cur_index][0]
        cur_edge_point_1 = correct_points[cur_index][1]
        next_edge_point_0 = correct_points[next_index][0]
        next_edge_point_1 = correct_points[next_index][1]
        cur_para_vetr_idx = para_vetr_idxs[cur_index]
        next_para_vetr_idx = para_vetr_idxs[next_index]
        if cur_para_vetr_idx != next_para_vetr_idx:
            # 垂直取交点
            L1 = line(cur_edge_point_0, cur_edge_point_1)
            L2 = line(next_edge_point_0, next_edge_point_1)
            point_intersection = intersection(L1, L2)
            final_points.append(point_intersection)
        elif cur_para_vetr_idx == next_para_vetr_idx:
            # 平行分两种,一种加短线,一种平移,取决于距离阈值
            L1 = line(cur_edge_point_0, cur_edge_point_1)
            L2 = line(next_edge_point_0, next_edge_point_1)
            marg = par_line_dist(L1, L2)
            if marg < 3:
                # 平移
                point_move = point_in_line(
                    next_edge_point_0[0], next_edge_point_0[1],
                    cur_edge_point_0[0], cur_edge_point_0[1],
                    cur_edge_point_1[0], cur_edge_point_1[1])
                final_points.append(point_move)
                # 更新平移之后的下一条边
                correct_points[next_index][0] = point_move
                correct_points[next_index][1] = point_in_line(
                    next_edge_point_1[0], next_edge_point_1[1],
                    cur_edge_point_0[0], cur_edge_point_0[1],
                    cur_edge_point_1[0], cur_edge_point_1[1])
            else:
                # 加线
                add_mid_point = (cur_edge_point_1 + next_edge_point_0) / 2
                add_point_1 = point_in_line(
                    add_mid_point[0], add_mid_point[1], cur_edge_point_0[0],
                    cur_edge_point_0[1], cur_edge_point_1[0],
                    cur_edge_point_1[1])
                add_point_2 = point_in_line(
                    add_mid_point[0], add_mid_point[1], next_edge_point_0[0],
                    next_edge_point_0[1], next_edge_point_1[0],
                    next_edge_point_1[1])
                final_points.append(add_point_1)
                final_points.append(add_point_2)
    final_points.append(final_points[0])
    final_points = np.array(final_points)
    final_points[:, 1] = h - final_points[:, 1]
    final_points = final_points[np.newaxis, :].transpose((1, 0, 2))
    return final_points


# def rs_build_re(mask):
#     # 中值滤波,去噪
#     ori_img = cv2.medianBlur(mask, 5)
#     ori_img = cv2.cvtColor(ori_img, cv2.COLOR_BGR2GRAY)
#     ret, ori_img = cv2.threshold(ori_img, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
#     # 连通域分析
#     num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(ori_img, connectivity=8)
#     # 遍历联通域
#     for i in range(1, num_labels):
#         img = np.zeros_like(labels)
#         index = np.where(labels==i)
#         img[index] = 255
#         img = np.array(img, dtype=np.uint8)
#         regularization_contour = boundary_regularization(img).astype(np.int32)
#         cv2.polylines(img=mask, pts=[regularization_contour], isClosed=True, color=(255, 0, 0), thickness=5)
#         single_out = np.zeros_like(mask)
#         cv2.polylines(img=single_out, pts=[regularization_contour], isClosed=True, color=(255, 0, 0), thickness=5)
#         cv2.imwrite('single_out_{}.jpg'.format(i), single_out)