coco.py 23.1 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
import json
import time
import matplotlib.pyplot as plt
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
import numpy as np
import copy
import itertools
import os
import os.path as osp
from collections import defaultdict
import sys
from datetime import datetime


def _isArrayLike(obj):
    return hasattr(obj, "__iter__") and hasattr(obj, "__len__")


class COCO:
    def __init__(self, annotation_file=None):
        """
        Constructor of Microsoft COCO helper class for reading and visualizing annotations.
        :param annotation_file (str): location of annotation file
        :param image_folder (str): location to the folder that hosts images.
        :return:
        """
        # dataset, anns, cats, imgs, imgToAnns, catToImgs, imgNameToId, maxAnnId, maxImgId
        self.dataset = {
            "categories": [],
            "images": [],
            "annotations": [],
            "info": "",
            "licenses": [],
        }  # the complete json
        self.anns = dict()  # anns[annId]={}
        self.cats = dict()  # cats[catId] = {}
        self.imgs = dict()  # imgs[imgId] = {}
        self.imgToAnns = defaultdict(list)  # imgToAnns[imgId] = [ann]
        self.catToImgs = defaultdict(list)  # catToImgs[catId] = [imgId]
        self.imgNameToId = defaultdict(list)  # imgNameToId[name] = imgId
        self.maxAnnId = 0
        self.maxImgId = 0
        if annotation_file is not None and osp.exists(annotation_file):
            print("loading annotations into memory...")
            tic = time.time()
            dataset = json.load(open(annotation_file, "r"))
            assert (
                type(dataset) == dict
            ), "annotation file format {} not supported".format(type(dataset))
            print("Done (t={:0.2f}s)".format(time.time() - tic))
            self.dataset = dataset
            self.createIndex()
            print(
                f"load coco with {len(self.dataset['images'])} images and {len(self.dataset['annotations'])} annotations."
            )

    def hasImage(self, imageName):
        imgId = self.imgNameToId.get(imageName, None)
        return imgId is not None

    def hasCat(self, catIdx):
        res = self.cats.get(catIdx)
        return res is not None

    def createIndex(self):
        # create index
        print("creating index...")
        anns, cats, imgs = {}, {}, {}
        imgNameToId, imgToAnns, catToImgs, imgNameToId = [
            defaultdict(list) for _ in range(4)
        ]
        if "annotations" in self.dataset:
            for ann in self.dataset["annotations"]:
                imgToAnns[ann["image_id"]].append(ann)
                anns[ann["id"]] = ann
                self.maxAnnId = max(self.maxAnnId, ann["id"])

        if "images" in self.dataset:
            for img in self.dataset["images"]:
                imgs[img["id"]] = img
                imgNameToId[img["file_name"]] = img["id"]
                try:
                    imgId = int(img["id"])
                    self.maxImgId = max(self.maxImgId, imgId)
                except:
                    pass

        if "categories" in self.dataset:
            for cat in self.dataset["categories"]:
                cats[cat["id"]] = cat

        if "annotations" in self.dataset and "categories" in self.dataset:
            for ann in self.dataset["annotations"]:
                catToImgs[ann["category_id"]].append(ann["image_id"])
        # TODO: read license
        print("index created!")

        self.anns = anns
        self.imgToAnns = imgToAnns
        self.catToImgs = catToImgs
        self.imgNameToId = imgNameToId
        self.imgs = imgs
        self.cats = cats

    def setInfo(
            self,
            year: int="",
            version: str="",
            description: str="",
            contributor: str="",
            url: str="",
            date_created: datetime="", ):
        self.dataset["info"] = {
            "year": year,
            "version": version,
            "description": description,
            "contributor": contributor,
            "url": url,
            "date_created": date_created,
        }

    def addCategory(
            self,
            id: int,
            name: str,
            color: list,
            supercategory: str="", ):
        cat = {
            "id": id,
            "name": name,
            "color": color,
            "supercategory": supercategory,
        }
        self.cats[id] = cat
        self.dataset["categories"].append(cat)

    def updateCategory(
            self,
            id: int,
            name: str,
            color: list,
            supercategory: str="", ):
        cat = {
            "id": id,
            "name": name,
            "color": color,
            "supercategory": supercategory,
        }
        self.cats[id] = cat
        for idx in range(len(self.dataset["categories"])):
            if self.dataset["categories"][idx]["id"] == id:
                self.dataset["categories"][idx] = cat

    def addImage(
            self,
            file_name: str,
            width: int,
            height: int,
            id: int=None,
            license: int="",
            flickr_url: str="",
            coco_url: str="",
            date_captured: datetime="", ):
        if self.hasImage(file_name):
            print(f"{file_name}图片已存在")
            return
        if not id:
            self.maxImgId += 1
            id = self.maxImgId
        image = {
            "id": id,
            "width": width,
            "height": height,
            "file_name": file_name,
            "license": license,
            "flickr_url": flickr_url,
            "coco_url": coco_url,
            "date_captured": date_captured,
        }
        self.dataset["images"].append(image)
        self.imgs[id] = image
        self.imgNameToId[file_name] = id
        return id

    def getBB(self, segmentation):
        x = segmentation[::2]
        y = segmentation[1::2]
        maxx, minx, maxy, miny = max(x), min(x), max(y), min(y)
        return [minx, miny, maxx - minx, maxy - miny]

    def getArea(self, segmentation):
        x = segmentation[::2]
        y = segmentation[1::2]

        return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1)))

    def addAnnotation(
            self,
            image_id: int,
            category_id: int,
            segmentation: list,
            area: float=None,
            id: int=None, ):
        if id is not None and self.anns.get(id, None) is not None:
            print("标签已经存在")
            return
        if not id:
            self.maxAnnId += 1
            id = self.maxAnnId

        ann = {
            "id": id,
            "iscrowd": 0,
            "image_id": image_id,
            "category_id": category_id,
            "segmentation": [segmentation],
            "area": self.getArea(segmentation),
            "bbox": self.getBB(segmentation),
        }

        self.dataset["annotations"].append(ann)
        self.anns[id] = ann
        self.imgToAnns[image_id].append(ann)
        self.catToImgs[category_id].append(image_id)
        return id

    def delAnnotation(self, annId, imgId):
        if "annotations" in self.dataset:
            for idx, ann in enumerate(self.dataset["annotations"]):
                if ann["id"] == annId:
                    del self.dataset["annotations"][idx]
        if annId in self.anns.keys():
            del self.anns[annId]

        for idx, ann in enumerate(self.imgToAnns[imgId]):
            if ann["id"] == annId:
                del self.imgToAnns[imgId][idx]

    def updateAnnotation(self, id, imgId, segmentation):
        self.anns[id]["segmentation"] = [segmentation]
        self.anns[id]["bbox"] = self.getBB(segmentation)
        self.anns[id]["area"] = self.getArea(segmentation)
        for rec in self.dataset["annotations"]:
            if rec["id"] == id:
                rec = self.anns[id]
                break

        for rec in self.dataset["annotations"]:
            if rec["id"] == id:
                # @todo TODO move into debug codes or controls
                print(
                    "record point : ",
                    rec["segmentation"][0][0],
                    rec["segmentation"][0][1], )
                break

        for rec in self.imgToAnns[imgId]:
            if rec["id"] == id:
                rec["segmentation"] = [segmentation]
                break

    def info(self):
        """
        Print information about the annotation file.
        :return:
        """
        for key, value in self.dataset["info"].items():
            print("{}: {}".format(key, value))

    def getAnnIds(self, imgIds=[], catIds=[], areaRng=[], iscrowd=None):
        """
        Get ann ids that satisfy given filter conditions. default skips that filter
        :param imgIds  (int array)     : get anns for given imgs
               catIds  (int array)     : get anns for given cats
               areaRng (float array)   : get anns for given area range (e.g. [0 inf])
               iscrowd (boolean)       : get anns for given crowd label (False or True)
        :return: ids (int array)       : integer array of ann ids
        """
        imgIds = imgIds if _isArrayLike(imgIds) else [imgIds]
        catIds = catIds if _isArrayLike(catIds) else [catIds]

        if len(imgIds) == len(catIds) == len(areaRng) == 0:
            anns = self.dataset["annotations"]
        else:
            if not len(imgIds) == 0:
                lists = [
                    self.imgToAnns[imgId] for imgId in imgIds
                    if imgId in self.imgToAnns
                ]
                anns = list(itertools.chain.from_iterable(lists))
            else:
                anns = self.dataset["annotations"]
            anns = (anns if len(catIds) == 0 else
                    [ann for ann in anns if ann["category_id"] in catIds])
            anns = (anns if len(areaRng) == 0 else [
                ann for ann in anns
                if ann["area"] > areaRng[0] and ann["area"] < areaRng[1]
            ])
        if not iscrowd == None:
            ids = [ann["id"] for ann in anns if ann["iscrowd"] == iscrowd]
        else:
            ids = [ann["id"] for ann in anns]
        return ids

    def getCatIds(self, catNms=[], supNms=[], catIds=[]):
        """
        filtering parameters. default skips that filter.
        :param catNms (str array)  : get cats for given cat names
        :param supNms (str array)  : get cats for given supercategory names
        :param catIds (int array)  : get cats for given cat ids
        :return: ids (int array)   : integer array of cat ids
        """
        catNms = catNms if _isArrayLike(catNms) else [catNms]
        supNms = supNms if _isArrayLike(supNms) else [supNms]
        catIds = catIds if _isArrayLike(catIds) else [catIds]

        if len(catNms) == len(supNms) == len(catIds) == 0:
            cats = self.dataset["categories"]
        else:
            cats = self.dataset["categories"]
            cats = (cats if len(catNms) == 0 else
                    [cat for cat in cats if cat["name"] in catNms])
            cats = (cats if len(supNms) == 0 else
                    [cat for cat in cats if cat["supercategory"] in supNms])
            cats = (cats if len(catIds) == 0 else
                    [cat for cat in cats if cat["id"] in catIds])
        ids = [cat["id"] for cat in cats]
        return ids

    def getImgIds(self, imgIds=[], catIds=[]):
        """
        Get img ids that satisfy given filter conditions.
        :param imgIds (int array) : get imgs for given ids
        :param catIds (int array) : get imgs with all given cats
        :return: ids (int array)  : integer array of img ids
        """
        imgIds = imgIds if _isArrayLike(imgIds) else [imgIds]
        catIds = catIds if _isArrayLike(catIds) else [catIds]

        if len(imgIds) == len(catIds) == 0:
            ids = self.imgs.keys()
        else:
            ids = set(imgIds)
            for i, catId in enumerate(catIds):
                if i == 0 and len(ids) == 0:
                    ids = set(self.catToImgs[catId])
                else:
                    ids &= set(self.catToImgs[catId])
        return list(ids)

    def loadAnns(self, ids=[]):
        """
        Load anns with the specified ids.
        :param ids (int array)       : integer ids specifying anns
        :return: anns (object array) : loaded ann objects
        """
        if _isArrayLike(ids):
            return [self.anns[id] for id in ids]
        elif type(ids) == int:
            return [self.anns[ids]]

    def loadCats(self, ids=[]):
        """
        Load cats with the specified ids.
        :param ids (int array)       : integer ids specifying cats
        :return: cats (object array) : loaded cat objects
        """
        if _isArrayLike(ids):
            return [self.cats[id] for id in ids]
        elif type(ids) == int:
            return [self.cats[ids]]

    def loadImgs(self, ids=[]):
        """
        Load anns with the specified ids.
        :param ids (int array)       : integer ids specifying img
        :return: imgs (object array) : loaded img objects
        """
        if _isArrayLike(ids):
            return [self.imgs[id] for id in ids]
        elif type(ids) == int:
            return [self.imgs[ids]]

    # def showAnns(self, anns, draw_bbox=False):
    #     """
    #     Display the specified annotations.
    #     :param anns (array of object): annotations to display
    #     :return: None
    #     """
    #     if len(anns) == 0:
    #         return 0
    #     if "segmentation" in anns[0] or "keypoints" in anns[0]:
    #         datasetType = "instances"
    #     elif "caption" in anns[0]:
    #         datasetType = "captions"
    #     else:
    #         raise Exception("datasetType not supported")
    #     if datasetType == "instances":
    #         ax = plt.gca()
    #         ax.set_autoscale_on(False)
    #         polygons = []
    #         color = []
    #         for ann in anns:
    #             c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
    #             if "segmentation" in ann:
    #                 if type(ann["segmentation"]) == list:
    #                     # polygon
    #                     for seg in ann["segmentation"]:
    #                         poly = np.array(seg).reshape((int(len(seg) / 2), 2))
    #                         polygons.append(Polygon(poly))
    #                         color.append(c)
    #                 else:
    #                     # mask
    #                     t = self.imgs[ann["image_id"]]
    #                     if type(ann["segmentation"]["counts"]) == list:
    #                         rle = maskUtils.frPyObjects(
    #                             [ann["segmentation"]], t["height"], t["width"]
    #                         )
    #                     else:
    #                         rle = [ann["segmentation"]]
    #                     m = maskUtils.decode(rle)
    #                     img = np.ones((m.shape[0], m.shape[1], 3))
    #                     if ann["iscrowd"] == 1:
    #                         color_mask = np.array([2.0, 166.0, 101.0]) / 255
    #                     if ann["iscrowd"] == 0:
    #                         color_mask = np.random.random((1, 3)).tolist()[0]
    #                     for i in range(3):
    #                         img[:, :, i] = color_mask[i]
    #                     ax.imshow(np.dstack((img, m * 0.5)))
    #             if "keypoints" in ann and type(ann["keypoints"]) == list:
    #                 # turn skeleton into zero-based index
    #                 sks = np.array(self.loadCats(ann["category_id"])[0]["skeleton"]) - 1
    #                 kp = np.array(ann["keypoints"])
    #                 x = kp[0::3]
    #                 y = kp[1::3]
    #                 v = kp[2::3]
    #                 for sk in sks:
    #                     if np.all(v[sk] > 0):
    #                         plt.plot(x[sk], y[sk], linewidth=3, color=c)
    #                 plt.plot(
    #                     x[v > 0],
    #                     y[v > 0],
    #                     "o",
    #                     markersize=8,
    #                     markerfacecolor=c,
    #                     markeredgecolor="k",
    #                     markeredgewidth=2,
    #                 )
    #                 plt.plot(
    #                     x[v > 1],
    #                     y[v > 1],
    #                     "o",
    #                     markersize=8,
    #                     markerfacecolor=c,
    #                     markeredgecolor=c,
    #                     markeredgewidth=2,
    #                 )
    #
    #             if draw_bbox:
    #                 [bbox_x, bbox_y, bbox_w, bbox_h] = ann["bbox"]
    #                 poly = [
    #                     [bbox_x, bbox_y],
    #                     [bbox_x, bbox_y + bbox_h],
    #                     [bbox_x + bbox_w, bbox_y + bbox_h],
    #                     [bbox_x + bbox_w, bbox_y],
    #                 ]
    #                 np_poly = np.array(poly).reshape((4, 2))
    #                 polygons.append(Polygon(np_poly))
    #                 color.append(c)
    #
    #         p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4)
    #         ax.add_collection(p)
    #         p = PatchCollection(
    #             polygons, facecolor="none", edgecolors=color, linewidths=2
    #         )
    #         ax.add_collection(p)
    #     elif datasetType == "captions":
    #         for ann in anns:
    #             print(ann["caption"])
    #
    # def loadRes(self, resFile):
    #     """
    #     Load result file and return a result api object.
    #     :param   resFile (str)     : file name of result file
    #     :return: res (obj)         : result api object
    #     """
    #     res = COCO()
    #     res.dataset["images"] = [img for img in self.dataset["images"]]
    #
    #     print("Loading and preparing results...")
    #     tic = time.time()
    #     if type(resFile) == str or (PYTHON_VERSION == 2 and type(resFile) == unicode):
    #         anns = json.load(open(resFile))
    #     elif type(resFile) == np.ndarray:
    #         anns = self.loadNumpyAnnotations(resFile)
    #     else:
    #         anns = resFile
    #     assert type(anns) == list, "results in not an array of objects"
    #     annsImgIds = [ann["image_id"] for ann in anns]
    #     assert set(annsImgIds) == (
    #         set(annsImgIds) & set(self.getImgIds())
    #     ), "Results do not correspond to current coco set"
    #     if "caption" in anns[0]:
    #         imgIds = set([img["id"] for img in res.dataset["images"]]) & set(
    #             [ann["image_id"] for ann in anns]
    #         )
    #         res.dataset["images"] = [
    #             img for img in res.dataset["images"] if img["id"] in imgIds
    #         ]
    #         for id, ann in enumerate(anns):
    #             ann["id"] = id + 1
    #     elif "bbox" in anns[0] and not anns[0]["bbox"] == []:
    #         res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
    #         for id, ann in enumerate(anns):
    #             bb = ann["bbox"]
    #             x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
    #             if not "segmentation" in ann:
    #                 ann["segmentation"] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
    #             ann["area"] = bb[2] * bb[3]
    #             ann["id"] = id + 1
    #             ann["iscrowd"] = 0
    #     elif "segmentation" in anns[0]:
    #         res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
    #         for id, ann in enumerate(anns):
    #             # now only support compressed RLE format as segmentation results
    #             ann["area"] = maskUtils.area(ann["segmentation"])
    #             if not "bbox" in ann:
    #                 ann["bbox"] = maskUtils.toBbox(ann["segmentation"])
    #             ann["id"] = id + 1
    #             ann["iscrowd"] = 0
    #     elif "keypoints" in anns[0]:
    #         res.dataset["categories"] = copy.deepcopy(self.dataset["categories"])
    #         for id, ann in enumerate(anns):
    #             s = ann["keypoints"]
    #             x = s[0::3]
    #             y = s[1::3]
    #             x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y)
    #             ann["area"] = (x1 - x0) * (y1 - y0)
    #             ann["id"] = id + 1
    #             ann["bbox"] = [x0, y0, x1 - x0, y1 - y0]
    #     print("DONE (t={:0.2f}s)".format(time.time() - tic))
    #
    #     res.dataset["annotations"] = anns
    #     res.createIndex()
    #     return res

    def download(self, tarDir=None, imgIds=[]):
        """
        Download COCO images from mscoco.org server.
        :param tarDir (str): COCO results directory name
               imgIds (list): images to be downloaded
        :return:
        """
        if tarDir is None:
            print("Please specify target directory")
            return -1
        if len(imgIds) == 0:
            imgs = self.imgs.values()
        else:
            imgs = self.loadImgs(imgIds)
        N = len(imgs)
        if not os.path.exists(tarDir):
            os.makedirs(tarDir)
        for i, img in enumerate(imgs):
            tic = time.time()
            fname = os.path.join(tarDir, img["file_name"])
            if not os.path.exists(fname):
                urlretrieve(img["coco_url"], fname)
            print("downloaded {}/{} images (t={:0.1f}s)".format(
                i, N, time.time() - tic))

    def loadNumpyAnnotations(self, data):
        """
        Convert result data from a numpy array [Nx7] where each row contains {imageID,x1,y1,w,h,score,class}
        :param  data (numpy.ndarray)
        :return: annotations (python nested list)
        """
        print("Converting ndarray to lists...")
        assert type(data) == np.ndarray
        print(data.shape)
        assert data.shape[1] == 7
        N = data.shape[0]
        ann = []
        for i in range(N):
            if i % 1000000 == 0:
                print("{}/{}".format(i, N))
            ann += [{
                "image_id": int(data[i, 0]),
                "bbox": [data[i, 1], data[i, 2], data[i, 3], data[i, 4]],
                "score": data[i, 5],
                "category_id": int(data[i, 6]),
            }]
        return ann

    # def annToRLE(self, ann):
    #     """
    #     Convert annotation which can be polygons, uncompressed RLE to RLE.
    #     :return: binary mask (numpy 2D array)
    #     """
    #     t = self.imgs[ann["image_id"]]
    #     h, w = t["height"], t["width"]
    #     segm = ann["segmentation"]
    #     if type(segm) == list:
    #         # polygon -- a single object might consist of multiple parts
    #         # we merge all parts into one mask rle code
    #         rles = maskUtils.frPyObjects(segm, h, w)
    #         rle = maskUtils.merge(rles)
    #     elif type(segm["counts"]) == list:
    #         # uncompressed RLE
    #         rle = maskUtils.frPyObjects(segm, h, w)
    #     else:
    #         # rle
    #         rle = ann["segmentation"]
    #     return rle

    # def annToMask(self, ann):
    #     """
    #     Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask.
    #     :return: binary mask (numpy 2D array)
    #     """
    #     rle = self.annToRLE(ann)
    #     m = maskUtils.decode(rle)
    #     return m