base.py 9.63 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/saic-vul/ritm_interactive_segmentation
Ths copyright of saic-vul/ritm_interactive_segmentation is as follows:
MIT License [see LICENSE for details]
"""

import paddle
import paddle.nn.functional as F
import numpy as np

from inference.transforms import AddHorizontalFlip, SigmoidForPred, LimitLongestSide
from .ops import DistMaps, ScaleLayer, BatchImageNormalize


class BasePredictor(object):
    def __init__(self,
                 model,
                 net_clicks_limit=None,
                 with_flip=False,
                 zoom_in=None,
                 max_size=None,
                 with_mask=True,
                 **kwargs):

        self.with_flip = with_flip
        self.net_clicks_limit = net_clicks_limit
        self.original_image = None
        self.zoom_in = zoom_in
        self.prev_prediction = None
        self.model_indx = 0
        self.click_models = None
        self.net_state_dict = None
        self.with_prev_mask = with_mask
        self.net = model
        if not paddle.in_dynamic_mode():
            paddle.disable_static()
        self.normalization = BatchImageNormalize([0.485, 0.456, 0.406],
                                                 [0.229, 0.224, 0.225])

        self.transforms = [zoom_in] if zoom_in is not None else []
        if max_size is not None:
            self.transforms.append(LimitLongestSide(max_size=max_size))
        self.transforms.append(SigmoidForPred())
        if with_flip:
            self.transforms.append(AddHorizontalFlip())
        self.dist_maps = DistMaps(
            norm_radius=5, spatial_scale=1.0, cpu_mode=False, use_disks=True)

    def to_tensor(self, x):
        if isinstance(x, np.ndarray):
            if x.ndim == 2:
                x = x[:, :, None]
        img = paddle.to_tensor(x.transpose([2, 0, 1])).astype("float32") / 255
        return img

    def set_input_image(self, image):
        image_nd = self.to_tensor(image)

        for transform in self.transforms:
            transform.reset()
        self.original_image = image_nd
        if len(self.original_image.shape) == 3:
            self.original_image = self.original_image.unsqueeze(0)
        self.prev_prediction = paddle.zeros_like(self.original_image[:, :
                                                                     1, :, :])
        if not self.with_prev_mask:
            self.prev_edge = paddle.zeros_like(self.original_image[:, :1, :, :])

    def get_prediction(self, clicker, prev_mask=None):
        clicks_list = clicker.get_clicks()

        input_image = self.original_image
        if prev_mask is None:
            if not self.with_prev_mask:

                prev_mask = self.prev_edge
            else:
                prev_mask = self.prev_prediction

        input_image = paddle.concat([input_image, prev_mask], axis=1)

        image_nd, clicks_lists, is_image_changed = self.apply_transforms(
            input_image, [clicks_list])
        pred_logits, pred_edges = self._get_prediction(image_nd, clicks_lists,
                                                       is_image_changed)

        pred_logits = paddle.to_tensor(pred_logits)

        prediction = F.interpolate(
            pred_logits,
            mode="bilinear",
            align_corners=True,
            size=image_nd.shape[2:])
        if pred_edges is not None:
            pred_edge = paddle.to_tensor(pred_edges)
            edge_prediction = F.interpolate(
                pred_edge,
                mode="bilinear",
                align_corners=True,
                size=image_nd.shape[2:])

        for t in reversed(self.transforms):
            if pred_edges is not None:
                edge_prediction = t.inv_transform(edge_prediction)
                self.prev_edge = edge_prediction
            prediction = t.inv_transform(prediction)

        if self.zoom_in is not None and self.zoom_in.check_possible_recalculation(
        ):
            return self.get_prediction(clicker)

        self.prev_prediction = prediction
        return prediction.numpy()[0, 0]

    def prepare_input(self, image):
        prev_mask = None
        prev_mask = image[:, 3:, :, :]
        image = image[:, :3, :, :]
        image = self.normalization(image)
        return image, prev_mask

    def get_coord_features(self, image, prev_mask, points):

        coord_features = self.dist_maps(image, points)

        if prev_mask is not None:
            coord_features = paddle.concat((prev_mask, coord_features), axis=1)

        return coord_features

    def _get_prediction(self, image_nd, clicks_lists, is_image_changed):
        input_names = self.net.get_input_names()
        self.input_handle_1 = self.net.get_input_handle(input_names[0])
        self.input_handle_2 = self.net.get_input_handle(input_names[1])
        points_nd = self.get_points_nd(clicks_lists)

        image, prev_mask = self.prepare_input(image_nd)
        coord_features = self.get_coord_features(image, prev_mask, points_nd)
        image = image.numpy().astype("float32")
        coord_features = coord_features.numpy().astype("float32")

        self.input_handle_1.copy_from_cpu(image)
        self.input_handle_2.copy_from_cpu(coord_features)

        self.net.run()

        output_names = self.net.get_output_names()

        output_handle = self.net.get_output_handle(output_names[0])
        output_data = output_handle.copy_to_cpu()
        if len(output_names) == 3:
            edge_handle = self.net.get_output_handle(output_names[2])
            edge_data = edge_handle.copy_to_cpu()
            return output_data, edge_data
        else:
            return output_data, None

    def _get_transform_states(self):
        return [x.get_state() for x in self.transforms]

    def _set_transform_states(self, states):
        assert len(states) == len(self.transforms)
        for state, transform in zip(states, self.transforms):
            transform.set_state(state)

    def apply_transforms(self, image_nd, clicks_lists):
        is_image_changed = False
        for t in self.transforms:
            image_nd, clicks_lists = t.transform(image_nd, clicks_lists)
            is_image_changed |= t.image_changed

        return image_nd, clicks_lists, is_image_changed

    def get_points_nd(self, clicks_lists):
        total_clicks = []
        num_pos_clicks = [
            sum(x.is_positive for x in clicks_list)
            for clicks_list in clicks_lists
        ]
        num_neg_clicks = [
            len(clicks_list) - num_pos
            for clicks_list, num_pos in zip(clicks_lists, num_pos_clicks)
        ]
        num_max_points = max(num_pos_clicks + num_neg_clicks)
        if self.net_clicks_limit is not None:
            num_max_points = min(self.net_clicks_limit, num_max_points)
        num_max_points = max(1, num_max_points)

        for clicks_list in clicks_lists:
            clicks_list = clicks_list[:self.net_clicks_limit]
            pos_clicks = [
                click.coords_and_indx for click in clicks_list
                if click.is_positive
            ]
            pos_clicks = pos_clicks + (num_max_points - len(pos_clicks)) * [
                (-1, -1, -1)
            ]

            neg_clicks = [
                click.coords_and_indx for click in clicks_list
                if not click.is_positive
            ]
            neg_clicks = neg_clicks + (num_max_points - len(neg_clicks)) * [
                (-1, -1, -1)
            ]
            total_clicks.append(pos_clicks + neg_clicks)

        return paddle.to_tensor(total_clicks)

    def get_states(self):
        return {
            "transform_states": self._get_transform_states(),
            "prev_prediction": self.prev_prediction,
        }

    def set_states(self, states):
        self._set_transform_states(states["transform_states"])
        self.prev_prediction = states["prev_prediction"]


def split_points_by_order(tpoints, groups):
    points = tpoints.numpy()
    num_groups = len(groups)
    bs = points.shape[0]
    num_points = points.shape[1] // 2

    groups = [x if x > 0 else num_points for x in groups]
    group_points = [
        np.full(
            (bs, 2 * x, 3), -1, dtype=np.float32) for x in groups
    ]

    last_point_indx_group = np.zeros((bs, num_groups, 2), dtype=np.int)
    for group_indx, group_size in enumerate(groups):
        last_point_indx_group[:, group_indx, 1] = group_size

    for bindx in range(bs):
        for pindx in range(2 * num_points):
            point = points[bindx, pindx, :]
            group_id = int(point[2])
            if group_id < 0:
                continue

            is_negative = int(pindx >= num_points)
            if group_id >= num_groups or (
                    group_id == 0 and
                    is_negative):  # disable negative first click
                group_id = num_groups - 1

            new_point_indx = last_point_indx_group[bindx, group_id, is_negative]
            last_point_indx_group[bindx, group_id, is_negative] += 1

            group_points[group_id][bindx, new_point_indx, :] = point

    group_points = [
        paddle.to_tensor(
            x, dtype=tpoints.dtype) for x in group_points
    ]

    return group_points