controller.py 12.3 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os.path as osp
import time
import json
import logging

import cv2
import numpy as np
from skimage.measure import label
import paddle

from eiseg import logger
from inference import clicker
from inference.predictor import get_predictor
import util
from util.vis import draw_with_blend_and_clicks
from models import EISegModel
from util import LabelList


class InteractiveController:
    def __init__(
            self,
            predictor_params: dict=None,
            prob_thresh: float=0.5, ):
        """初始化控制器.

        Parameters
        ----------
        predictor_params : dict
            推理器配置
        prob_thresh : float
            区分前景和背景结果的阈值

        """

        self.predictor_params = predictor_params
        self.prob_thresh = prob_thresh
        self.model = None
        self.image = None
        self.rawImage = None
        self.predictor = None
        self.clicker = clicker.Clicker()
        self.states = []
        self.probs_history = []
        self.polygons = []

        # 用于redo
        self.undo_states = []
        self.undo_probs_history = []

        self.curr_label_number = 0
        self._result_mask = None
        self.labelList = LabelList()
        self.lccFilter = False
        self.log = logging.getLogger(__name__)

    def filterLargestCC(self, do_filter: bool):
        """设置是否只保留推理结果中的最大联通块

        Parameters
        ----------
        do_filter : bool
            是否只保存推理结果中的最大联通块
        """
        if not isinstance(do_filter, bool):
            return
        self.lccFilter = do_filter

    def setModel(self, param_path=None, use_gpu=None):
        """设置推理其模型.

        Parameters
        ----------
        params_path : str
            模型路径

        use_gpu : bool
            None:检测,根据paddle版本判断
            bool:按照指定是否开启GPU

        Returns
        -------
        bool, str
            是否成功设置模型, 失败原因

        """
        if param_path is not None:
            model_path = param_path.replace(".pdiparams", ".pdmodel")
            if not osp.exists(model_path):
                raise Exception(f"未在 {model_path} 找到模型文件")
            if use_gpu is None:
                if paddle.device.is_compiled_with_cuda(
                ):  # TODO: 可以使用GPU却返回False
                    use_gpu = True
                else:
                    use_gpu = False
            logger.info(f"User paddle compiled with gpu: use_gpu {use_gpu}")
            tic = time.time()
            try:
                self.model = EISegModel(model_path, param_path, use_gpu)
                self.reset_predictor()  # 即刻生效
            except KeyError as e:
                return False, str(e)
            logger.info(f"Load model {model_path} took {time.time() - tic}")
            return True, "模型设置成功"

    def setImage(self, image: np.array):
        """设置当前标注的图片

        Parameters
        ----------
        image : np.array
            当前标注的图片

        """
        if self.model is not None:
            self.image = image
            self._result_mask = np.zeros(image.shape[:2], dtype=np.uint8)
            self.resetLastObject()

    # 标签操作
    def setLabelList(self, labelList: json):
        """设置标签列表,会覆盖已有的标签列表

        Parameters
        ----------
        labelList : json
            标签列表格式为
            {
                {
                    "idx" : int         (like 0 or 1 or 2)
                    "name" : str        (like "car" or "airplan")
                    "color" : list      (like [255, 0, 0])
                },
                ...
            }

        Returns
        -------
        type
            Description of returned object.

        """
        self.labelList.clear()
        labels = json.loads(labelList)
        for lab in labels:
            self.labelList.add(lab["id"], lab["name"], lab["color"])

    def addLabel(self, id: int, name: str, color: list):
        self.labelList.add(id, name, color)

    def delLabel(self, id: int):
        self.labelList.remove(id)

    def clearLabel(self):
        self.labelList.clear()

    def importLabel(self, path):
        self.labelList.importLabel(path)

    def exportLabel(self, path):
        self.labelList.exportLabel(path)

    # 点击操作
    def addClick(self, x: int, y: int, is_positive: bool):
        """添加一个点并运行推理,保存历史用于undo

        Parameters
        ----------
        x : int
            点击的横坐标
        y : int
            点击的纵坐标
        is_positive : bool
            是否点的是正点

        Returns
        -------
        bool, str
            点击是否添加成功, 失败原因

        """

        # 1. 确定可以点
        if not self.inImage(x, y):
            return False, "点击越界"
        if not self.modelSet:
            return False, "未加载模型"
        if not self.imageSet:
            return False, "图像未设置"

        if len(self.states) == 0:  # 保存一个空状态
            self.states.append({
                "clicker": self.clicker.get_state(),
                "predictor": self.predictor.get_states(),
            })

        # 2. 添加点击,跑推理
        click = clicker.Click(is_positive=is_positive, coords=(y, x))
        self.clicker.add_click(click)
        pred = self.predictor.get_prediction(self.clicker)

        # 3. 保存状态
        self.states.append({
            "clicker": self.clicker.get_state(),
            "predictor": self.predictor.get_states(),
        })
        if self.probs_history:
            self.probs_history.append((self.probs_history[-1][1], pred))
        else:
            self.probs_history.append((np.zeros_like(pred), pred))

        # 点击之后就不能接着之前的历史redo了
        self.undo_states = []
        self.undo_probs_history = []
        return True, "点击添加成功"

    def undoClick(self):
        """
        undo一步点击
        """
        if len(self.states) <= 1:  # == 1就只剩下一个空状态了,不用再退
            return
        self.undo_states.append(self.states.pop())
        self.clicker.set_state(self.states[-1]["clicker"])
        self.predictor.set_states(self.states[-1]["predictor"])
        self.undo_probs_history.append(self.probs_history.pop())
        if not self.probs_history:
            self.reset_init_mask()

    def redoClick(self):
        """
        redo一步点击
        """
        if len(self.undo_states) == 0:  # 如果还没撤销过
            return
        if len(self.undo_probs_history) >= 1:
            next_state = self.undo_states.pop()
            self.states.append(next_state)
            self.clicker.set_state(next_state["clicker"])
            self.predictor.set_states(next_state["predictor"])
            self.probs_history.append(self.undo_probs_history.pop())

    def finishObject(self, building=False):
        """
        结束当前物体标注,准备标下一个
        """
        object_prob = self.current_object_prob
        if object_prob is None:
            return None, None
        object_mask = object_prob > self.prob_thresh
        if self.lccFilter:
            object_mask = self.getLargestCC(object_mask)
        polygon = util.get_polygon(
            (object_mask.astype(np.uint8) * 255),
            img_size=object_mask.shape,
            building=building)
        if polygon is not None:
            self._result_mask[object_mask] = self.curr_label_number
            self.resetLastObject()
            self.polygons.append([self.curr_label_number, polygon])
        return object_mask, polygon

    # 多边形
    def getPolygon(self):
        return self.polygon

    def setPolygon(self, polygon):
        self.polygon = polygon

    # mask
    def getMask(self):
        s = self.imgShape
        img = np.zeros([s[0], s[1]])
        for poly in self.polygons:
            pts = np.int32([np.array(poly[1])])
            cv2.fillPoly(img, pts=pts, color=poly[0])
        return img

    def setCurrLabelIdx(self, number):
        if not isinstance(number, int):
            return False
        self.curr_label_number = number

    def resetLastObject(self, update_image=True):
        """
        重置控制器状态
        Parameters
            update_image(bool): 是否更新图像
        """
        self.states = []
        self.probs_history = []
        self.undo_states = []
        self.undo_probs_history = []
        # self.current_object_prob = None
        self.clicker.reset_clicks()
        self.reset_predictor()
        self.reset_init_mask()

    def reset_predictor(self, predictor_params=None):
        """
        重置推理器,可以换推理配置
        Parameters
            predictor_params(dict): 推理配置
        """
        if predictor_params is not None:
            self.predictor_params = predictor_params
        if self.model.model:
            self.predictor = get_predictor(self.model.model,
                                           **self.predictor_params)
            if self.image is not None:
                self.predictor.set_input_image(self.image)

    def reset_init_mask(self):
        self.clicker.click_indx_offset = 0

    def getLargestCC(self, mask):
        mask = label(mask)
        if mask.max() == 0:
            return mask
        mask = mask == np.argmax(np.bincount(mask.flat)[1:]) + 1
        return mask

    def get_visualization(self, alpha_blend: float, click_radius: int):
        if self.image is None:
            return None
        # 1. 正在标注的mask
        # results_mask_for_vis = self.result_mask  # 加入之前标完的mask
        results_mask_for_vis = np.zeros_like(self.result_mask)
        results_mask_for_vis *= self.curr_label_number
        if self.probs_history:
            results_mask_for_vis[self.current_object_prob >
                                 self.prob_thresh] = self.curr_label_number
        if self.lccFilter:
            results_mask_for_vis = (self.getLargestCC(results_mask_for_vis) *
                                    self.curr_label_number)
        vis = draw_with_blend_and_clicks(
            self.image,
            mask=results_mask_for_vis,
            alpha=alpha_blend,
            clicks_list=self.clicker.clicks_list,
            radius=click_radius,
            palette=self.palette, )
        return vis

    def inImage(self, x: int, y: int):
        s = self.image.shape
        if x < 0 or y < 0 or x >= s[1] or y >= s[0]:
            return False
        return True

    @property
    def result_mask(self):
        result_mask = self._result_mask.copy()
        return result_mask

    @property
    def palette(self):
        if self.labelList:
            colors = [ml.color for ml in self.labelList]
            colors.insert(0, [0, 0, 0])
        else:
            colors = [[0, 0, 0]]
        return colors

    @property
    def current_object_prob(self):
        """
        获取当前推理标签
        """
        if self.probs_history:
            _, current_prob_additive = self.probs_history[-1]
            return current_prob_additive
        else:
            return None

    @property
    def is_incomplete_mask(self):
        """
        Returns
            bool: 当前的物体是不是还没标完
        """
        return len(self.probs_history) > 0

    @property
    def imgShape(self):
        return self.image.shape  # [1::-1]

    @property
    def modelSet(self):
        return self.model is not None

    @property
    def modelName(self):
        return self.model.__name__

    @property
    def imageSet(self):
        return self.image is not None