MUSCLE_en.md 13.9 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
<div align="center">
	<img src="https://user-images.githubusercontent.com/50255927/189930324-0f3992cd-47f8-487c-b20e-5a59f28f978f.png" align="middle" alt="LOGO" height="60"/><img src="https://user-images.githubusercontent.com/35907364/179460858-7dfb19b1-cabf-4f8a-9e81-eb15b6cc7d5f.png" align="middle" alt="LOGO" height="60"/><img src="https://user-images.githubusercontent.com/50255927/189930342-d32b90e5-ef80-44fb-9eab-c9df25ca0d12.png" align="middle" alt="LOGO" height="60" />
</div>


# MUSCLE - MICCAI 2022
This is a repository for paper "MUSCLE: Multi-task Self-supervised Continual Learning to 
Pre-train Deep Models for X-ray Images of Multiple Body Parts" accepted by MICCAI 2022.

## Introduction

The goal of MUSCLE (*<u>MU</u>lti-task <u>S</u>elf-supervised <u>C</u>ontinual <u>LE</u>arning*) is to pre-train the deep neural network (DNN) models and 
deliver decent performance on medical image analysis tasks.

All codes are implemented using PaddlePaddle.

## Framework

![image](https://user-images.githubusercontent.com/50255927/189317770-c8c9e866-beb2-4eb5-8116-21ab00850ef0.png)

MUSCLE aggregated multiple X-ray image datasets collected from different human body
parts, subject to various X-ray analytics tasks. We proposed Multi-Dataset Momentum 
Contrastive Representation Learning (MD-MoCo) and Multi-task Continual Learning to 
pre-train the backbone DNNs in a self-supervised continual learning manner. 
The pre-trained models could be fine-tuned to target tasks using task-specific heads 
and achieve superb performance.

## Datasets

<table class="tg">
<thead>
  <tr>
    <th class="tg-cly1">Datasets</th>
    <th class="tg-cly1">Body Part</th>
    <th class="tg-cly1">Task</th>
    <th class="tg-cly1">Train</th>
    <th class="tg-cly1">Valid</th>
    <th class="tg-cly1">Test</th>
    <th class="tg-cly1">Total</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td class="tg-nrix" colspan="7">Only Used for the first step (MD-MoCo) of MUSCLE</td>
  </tr>
  <tr>
    <td class="tg-cly1">NIHCC</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">112,120</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-cly1">112,120</td>
  </tr>
  <tr>
    <td class="tg-cly1">China-Set-CXR</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">661</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-cly1">661</td>
  </tr>
  <tr>
    <td class="tg-cly1">Montgomery-Set-CXR</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">138</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-cly1">138</td>
  </tr>
  <tr>
    <td class="tg-cly1">Indiana-CXR</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">7,470</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-cly1">7,470</td>
  </tr>
  <tr>
    <td class="tg-cly1">RSNA Bone Age</td>
    <td class="tg-nrix">Hand</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">10,811</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-cly1">10,811</td>
  </tr>
  <tr>
    <td class="tg-nrix" colspan="7">Used for all three steps of MUSCLE</td>
  </tr>
  <tr>
    <td class="tg-cly1">Pneumonia</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">Classification</td>
    <td class="tg-cly1">4,686</td>
    <td class="tg-cly1">585</td>
    <td class="tg-cly1">585</td>
    <td class="tg-cly1">5,856</td>
  </tr>
  <tr>
    <td class="tg-cly1">MURA</td>
    <td class="tg-nrix">Various Bone</td>
    <td class="tg-nrix">Classification</td>
    <td class="tg-cly1">32,013</td>
    <td class="tg-cly1">3,997</td>
    <td class="tg-cly1">3,997</td>
    <td class="tg-cly1">40,005</td>
  </tr>
  <tr>
    <td class="tg-cly1">Chest Xray Masks and labels</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">Segmentation</td>
    <td class="tg-cly1">718</td>
    <td class="tg-cly1">89</td>
    <td class="tg-cly1">89</td>
    <td class="tg-cly1">896</td>
  </tr>
  <tr>
    <td class="tg-cly1">TBX</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">Detection</td>
    <td class="tg-cly1">640</td>
    <td class="tg-cly1">80</td>
    <td class="tg-cly1">80</td>
    <td class="tg-cly1">800</td>
  </tr>
  <tr>
    <td class="tg-cly1">Total</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">169,257</td>
    <td class="tg-cly1">4,751</td>
    <td class="tg-cly1">4,479</td>
    <td class="tg-cly1">178,757</td>
  </tr>
</tbody>
</table>

## Experiments

### Experiment setups
- Backbone
    - ResNet-18 and ResNet-50
- Task
    - Pneumonia classification (Pneumonia), 
    - Skeletal abnormality classification (MURA)
    - Lung segmentation (Lung)
    - Tuberculosis detection (TBX)
- Head
    - Fully-Connected (FC) Layer for classification tasks
    - DeepLab-V3 for segmentation tasks
    - FasterRCNN for detection tasks
- Baselines Pre-training Algorithms
    - **Scratch**: the models are all initialized using Kaiming’s random initialization and fine-tuned on the target datasets
    - **ImageNet**: the models are initialized using the officially-released weights pre-trained by the ImageNet dataset and fine-tuned on the target datasets
    - **MD-MoCo**: the models are pre-trained using multi-dataset MoCo and fine-tuned accordingly
    - **MUSCLE−−**: all models are pre-trained and fine-tuned with MUSCLE but with Cross-Task Memorization and Cyclic and Reshuffled Learning Schedule turned off

### Results for various body parts
+ Note: **chest** of Pneumonia and **bones** of MURA

<div>

<table class="tg">
<thead>
  <tr>
    <th class="tg-8d8j">Datasets</th>
    <th class="tg-2b7s">Backbones</th>
    <th class="tg-7zrl">Pre-train</th>
    <th class="tg-2b7s">Acc.</th>
    <th class="tg-8d8j">Sen.</th>
    <th class="tg-8d8j">Spe.</th>
    <th class="tg-2b7s">AUC(95%CI)</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td class="tg-8d8j" rowspan="10">Pneumonia</td>
    <td class="tg-2b7s" rowspan="5">ResNet-18</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">91.11</td>
    <td class="tg-8d8j">93.91</td>
    <td class="tg-8d8j">83.54</td>
    <td class="tg-2b7s">96.58(95.09-97.81)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImageNet</td>
    <td class="tg-2b7s">90.09</td>
    <td class="tg-8d8j">93.68</td>
    <td class="tg-8d8j">80.38</td>
    <td class="tg-2b7s">96.05(94.24-97.33)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">96.58</td>
    <td class="tg-8d8j">97.19</td>
    <td class="tg-8d8j">94.94</td>
    <td class="tg-2b7s">98.48(97.14-99.30)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">96.75</td>
    <td class="tg-8d8j">97.66</td>
    <td class="tg-8d8j">94.30</td>
    <td class="tg-2b7s">99.51(99.16-99.77)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">97.26</td>
    <td class="tg-8d8j">97.42</td>
    <td class="tg-8d8j">96.84</td>
    <td class="tg-2b7s">99.61(99.32-99.83)	</td>
  </tr>
  <tr>
    <td class="tg-2b7s" rowspan="5">ResNet-50</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">91.45</td>
    <td class="tg-8d8j">92.51</td>
    <td class="tg-8d8j">88.61</td>
    <td class="tg-2b7s">96.55(95.08-97.82)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImageNet</td>
    <td class="tg-2b7s">95.38</td>
    <td class="tg-8d8j">95.78</td>
    <td class="tg-8d8j">94.30</td>
    <td class="tg-2b7s">98.72(98.03-99.33)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">97.09</td>
    <td class="tg-8d8j">98.83</td>
    <td class="tg-8d8j">92.41</td>
    <td class="tg-2b7s">99.53(99.23-99.75)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">96.75</td>
    <td class="tg-8d8j">98.36</td>
    <td class="tg-8d8j">92.41</td>
    <td class="tg-2b7s">99.58(99.30-99.84)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">98.12</td>
    <td class="tg-8d8j">98.36</td>
    <td class="tg-8d8j">97.47</td>
    <td class="tg-2b7s">99.72(99.46-99.92)</td>
  </tr>
  <tr>
    <td class="tg-8d8j" rowspan="10">MURA</td>
    <td class="tg-2b7s" rowspan="5">ResNet-18</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">81.00</td>
    <td class="tg-8d8j">68.17</td>
    <td class="tg-8d8j">89.91</td>
    <td class="tg-2b7s">86.62(85.73-87.55)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImageNet</td>
    <td class="tg-2b7s">81.88</td>
    <td class="tg-8d8j">73.49</td>
    <td class="tg-8d8j">87.70</td>
    <td class="tg-2b7s">88.11(87.18-89.03)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">82.48</td>
    <td class="tg-8d8j">72.27</td>
    <td class="tg-8d8j">89,57</td>
    <td class="tg-2b7s">88.28(87.28-89.26)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">82.45</td>
    <td class="tg-8d8j">74.16</td>
    <td class="tg-8d8j">88.21</td>
    <td class="tg-2b7s">88.41(87.54-89.26)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">82.62</td>
    <td class="tg-8d8j">74.28</td>
    <td class="tg-8d8j">88.42</td>
    <td class="tg-2b7s">88.5o(87.46-89.57)</td>
  </tr>
  <tr>
    <td class="tg-2b7s" rowspan="5">RcsNet-50</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">80.50</td>
    <td class="tg-8d8j">65.42</td>
    <td class="tg-8d8j">90.97</td>
    <td class="tg-2b7s">86.22(85.22-87.35)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImngeNet</td>
    <td class="tg-2b7s">81.73</td>
    <td class="tg-8d8j">68.36</td>
    <td class="tg-8d8j">91.01</td>
    <td class="tg-2b7s">87.87(86.85-88.85)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">82.35</td>
    <td class="tg-8d8j">73.12</td>
    <td class="tg-8d8j">88.76</td>
    <td class="tg-2b7s">87.89(87.06-88.88)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">81.10</td>
    <td class="tg-8d8j">69.03</td>
    <td class="tg-8d8j">89.48</td>
    <td class="tg-2b7s">87.14(86.10-88.22)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">82.60</td>
    <td class="tg-8d8j">74.53</td>
    <td class="tg-8d8j">88.21</td>
    <td class="tg-2b7s">88.37(87.38-89.32)</td>
  </tr>
</tbody>
</table>
</div>


![image](https://user-images.githubusercontent.com/50255927/189317679-e3c22309-899b-4f8f-a689-d81e406376b5.png)

### Results for various tasks
+ Note: **segmentation task** for Lung and **detection task** for TBX

<table class="tg">
<thead>
  <tr>
    <th class="tg-7zrl" rowspan="2">Backbones</th>
    <th class="tg-7zrl" rowspan="2">Pre-train</th>
    <th class="tg-8d8j" colspan="2">Lung</th>
    <th class="tg-8d8j" colspan="3">TBX</th>
  </tr>
  <tr>
    <th class="tg-2b7s">Dice</th>
    <th class="tg-7zrl">mloU</th>
    <th class="tg-7zrl">mAP</th>
    <th class="tg-7zrl">AP-Active</th>
    <th class="tg-7zrl">AP-Latent</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td class="tg-7zrl" rowspan="5">ResNet-18</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">95.24</td>
    <td class="tg-2b7s">94.00</td>
    <td class="tg-2b7s">30.71</td>
    <td class="tg-2b7s">56.71</td>
    <td class="tg-2b7s">4.72</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImageNet</td>
    <td class="tg-2b7s">95.26</td>
    <td class="tg-2b7s">94.10</td>
    <td class="tg-2b7s">29.46</td>
    <td class="tg-2b7s">56.27</td>
    <td class="tg-2b7s">2.66</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">95.31</td>
    <td class="tg-2b7s">94.14</td>
    <td class="tg-2b7s">36.00</td>
    <td class="tg-2b7s">67.17</td>
    <td class="tg-2b7s">4.84</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">95.14</td>
    <td class="tg-2b7s">93.90</td>
    <td class="tg-2b7s">34.70</td>
    <td class="tg-2b7s">63.43</td>
    <td class="tg-2b7s">5.97</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">95.37</td>
    <td class="tg-2b7s">94.22</td>
    <td class="tg-2b7s">36.71</td>
    <td class="tg-2b7s">64.84</td>
    <td class="tg-2b7s">8.59</td>
  </tr>
  <tr>
    <td class="tg-7zrl" rowspan="5"> <br>ResNet-50</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">93.52</td>
    <td class="tg-2b7s">92.03</td>
    <td class="tg-2b7s">23.93</td>
    <td class="tg-2b7s">44.85</td>
    <td class="tg-2b7s">3.01</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImageNet</td>
    <td class="tg-2b7s">93.77</td>
    <td class="tg-2b7s">92.43</td>
    <td class="tg-2b7s">35.61</td>
    <td class="tg-2b7s">58.81</td>
    <td class="tg-2b7s">12.42</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">94.33</td>
    <td class="tg-2b7s">93.04</td>
    <td class="tg-2b7s">36.78</td>
    <td class="tg-2b7s">64.37</td>
    <td class="tg-2b7s">9.18</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">95.04</td>
    <td class="tg-2b7s">93.82</td>
    <td class="tg-2b7s">35.14</td>
    <td class="tg-2b7s">57.32</td>
    <td class="tg-2b7s">12.97</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">95.27</td>
    <td class="tg-2b7s">94.10</td>
    <td class="tg-2b7s">37.83</td>
    <td class="tg-2b7s">63.46</td>
    <td class="tg-2b7s">12.21</td>
  </tr>
</tbody>
</table>

![image](https://user-images.githubusercontent.com/50255927/189317479-14ecb3de-da80-4df3-b9a0-f1fece7b953f.png)

## Citation

If our work is helpful to you, please kindly cite our paper as:
```
@inproceedings{liao2022muscle,  
title={MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep Models for X-ray Images of Multiple Body Parts},  
author={Weibin, Liao and Haoyi, Xiong and Qingzhong, Wang and Yan, Mo and Xuhong, Li and Yi, Liu and Zeyu, Chen and Siyu, Huang and Dejing, Dou},  
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
year={2022},  
organization={Springer}  
}  
```