MUSCLE.md 13.7 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
<div align="center">
	<img src="https://user-images.githubusercontent.com/50255927/189930324-0f3992cd-47f8-487c-b20e-5a59f28f978f.png" align="middle" alt="LOGO" height="60"/><img src="https://user-images.githubusercontent.com/35907364/179460858-7dfb19b1-cabf-4f8a-9e81-eb15b6cc7d5f.png" align="middle" alt="LOGO" height="60"/><img src="https://user-images.githubusercontent.com/50255927/189930342-d32b90e5-ef80-44fb-9eab-c9df25ca0d12.png" align="middle" alt="LOGO" height="60" />
</div>


# MUSCLE - MICCAI 2022
这是一篇论文 "MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep Models for X-ray Images of Multiple Body Parts" 的相关介绍。
该论文发布于MICCAI 2022。

## 简介
MUSCLE的主标是通过预训练一个主干网络,来提高深度学习在医学影像分析任务中的性能。

该论文的所有代码均使用PaddlePaddle框架实现。

## 框架
![image](https://user-images.githubusercontent.com/50255927/189317770-c8c9e866-beb2-4eb5-8116-21ab00850ef0.png)

MUSCLE聚合了从不同人体部位收集的多个Xray图像数据集,并作用于各种Xray影像的分析任务。
我们提出了多数据集动量对比表征学习(MD-MoCo)模块和多任务持续学习模块,
以自我监督的持续学习方式对深度学习框架的主干网络进行预训练。
预训练的模型可以使用特定任务的head对目标任务进行微调,并取得极佳的性能。

## 数据集
<table class="tg">
<thead>
  <tr>
    <th class="tg-cly1">Datasets</th>
    <th class="tg-cly1">Body Part</th>
    <th class="tg-cly1">Task</th>
    <th class="tg-cly1">Train</th>
    <th class="tg-cly1">Valid</th>
    <th class="tg-cly1">Test</th>
    <th class="tg-cly1">Total</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td class="tg-nrix" colspan="7">Only Used for the first step (MD-MoCo) of MUSCLE</td>
  </tr>
  <tr>
    <td class="tg-cly1">NIHCC</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">112,120</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-cly1">112,120</td>
  </tr>
  <tr>
    <td class="tg-cly1">China-Set-CXR</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">661</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-cly1">661</td>
  </tr>
  <tr>
    <td class="tg-cly1">Montgomery-Set-CXR</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">138</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-cly1">138</td>
  </tr>
  <tr>
    <td class="tg-cly1">Indiana-CXR</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">7,470</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-cly1">7,470</td>
  </tr>
  <tr>
    <td class="tg-cly1">RSNA Bone Age</td>
    <td class="tg-nrix">Hand</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">10,811</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-mwxe">N/A</td>
    <td class="tg-cly1">10,811</td>
  </tr>
  <tr>
    <td class="tg-nrix" colspan="7">Used for all three steps of MUSCLE</td>
  </tr>
  <tr>
    <td class="tg-cly1">Pneumonia</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">Classification</td>
    <td class="tg-cly1">4,686</td>
    <td class="tg-cly1">585</td>
    <td class="tg-cly1">585</td>
    <td class="tg-cly1">5,856</td>
  </tr>
  <tr>
    <td class="tg-cly1">MURA</td>
    <td class="tg-nrix">Various Bone</td>
    <td class="tg-nrix">Classification</td>
    <td class="tg-cly1">32,013</td>
    <td class="tg-cly1">3,997</td>
    <td class="tg-cly1">3,997</td>
    <td class="tg-cly1">40,005</td>
  </tr>
  <tr>
    <td class="tg-cly1">Chest Xray Masks and labels</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">Segmentation</td>
    <td class="tg-cly1">718</td>
    <td class="tg-cly1">89</td>
    <td class="tg-cly1">89</td>
    <td class="tg-cly1">896</td>
  </tr>
  <tr>
    <td class="tg-cly1">TBX</td>
    <td class="tg-nrix">Chest</td>
    <td class="tg-nrix">Detection</td>
    <td class="tg-cly1">640</td>
    <td class="tg-cly1">80</td>
    <td class="tg-cly1">80</td>
    <td class="tg-cly1">800</td>
  </tr>
  <tr>
    <td class="tg-cly1">Total</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-nrix">N/A</td>
    <td class="tg-cly1">169,257</td>
    <td class="tg-cly1">4,751</td>
    <td class="tg-cly1">4,479</td>
    <td class="tg-cly1">178,757</td>
  </tr>
</tbody>
</table>

## 实验
### 实验设置
- 主干网络
    - ResNet-18、 ResNet-50
- 医学影像分析任务
    - 肺炎分类任务 (Pneumonia), 
    - 骨骼异常分类任务 (MURA)
    - 肺部分割任务 (Lung)
    - 结核病Bounding Box检测 (TBX)
- Head网络
    - 分类任务:Fully-Connected (FC) Layer
    - 分割任务:DeepLab-V3
    - 检测任务:FasterRCNN
- 基线的预训练算法
    - **Scratch**: 模型主干网络使用Kaiming’s initialization进行参数初始化
    - **ImageNet**: 模型主干网络使用官方发布的ImageNet进行参数初始化
    - **MD-MoCo**: 模型主干网络只使用在多数据源的Xray图像进行MoCo学习的参数进行初始化
    - **MUSCLE−−**: 模型的初始化策略和MUSCLE一致,但是不采用我们设计的跨任务记忆与循环和重组学习计划模块

### 不同身体部位的Xray数据集的结果 

注意:Pneumonia是由**胸片**图像构成的数据集,而MURA由**骨骼**图像构成
<table class="tg">
<thead>
  <tr>
    <th class="tg-8d8j">Datasets</th>
    <th class="tg-2b7s">Backbones</th>
    <th class="tg-7zrl">Pre-train</th>
    <th class="tg-2b7s">Acc.</th>
    <th class="tg-8d8j">Sen.</th>
    <th class="tg-8d8j">Spe.</th>
    <th class="tg-2b7s">AUC(95%CI)</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td class="tg-8d8j" rowspan="10">Pneumonia</td>
    <td class="tg-2b7s" rowspan="5">ResNet-18</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">91.11</td>
    <td class="tg-8d8j">93.91</td>
    <td class="tg-8d8j">83.54</td>
    <td class="tg-2b7s">96.58(95.09-97.81)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImageNet</td>
    <td class="tg-2b7s">90.09</td>
    <td class="tg-8d8j">93.68</td>
    <td class="tg-8d8j">80.38</td>
    <td class="tg-2b7s">96.05(94.24-97.33)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">96.58</td>
    <td class="tg-8d8j">97.19</td>
    <td class="tg-8d8j">94.94</td>
    <td class="tg-2b7s">98.48(97.14-99.30)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">96.75</td>
    <td class="tg-8d8j">97.66</td>
    <td class="tg-8d8j">94.30</td>
    <td class="tg-2b7s">99.51(99.16-99.77)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">97.26</td>
    <td class="tg-8d8j">97.42</td>
    <td class="tg-8d8j">96.84</td>
    <td class="tg-2b7s">99.61(99.32-99.83)	</td>
  </tr>
  <tr>
    <td class="tg-2b7s" rowspan="5">ResNet-50</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">91.45</td>
    <td class="tg-8d8j">92.51</td>
    <td class="tg-8d8j">88.61</td>
    <td class="tg-2b7s">96.55(95.08-97.82)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImageNet</td>
    <td class="tg-2b7s">95.38</td>
    <td class="tg-8d8j">95.78</td>
    <td class="tg-8d8j">94.30</td>
    <td class="tg-2b7s">98.72(98.03-99.33)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">97.09</td>
    <td class="tg-8d8j">98.83</td>
    <td class="tg-8d8j">92.41</td>
    <td class="tg-2b7s">99.53(99.23-99.75)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">96.75</td>
    <td class="tg-8d8j">98.36</td>
    <td class="tg-8d8j">92.41</td>
    <td class="tg-2b7s">99.58(99.30-99.84)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">98.12</td>
    <td class="tg-8d8j">98.36</td>
    <td class="tg-8d8j">97.47</td>
    <td class="tg-2b7s">99.72(99.46-99.92)</td>
  </tr>
  <tr>
    <td class="tg-8d8j" rowspan="10">MURA</td>
    <td class="tg-2b7s" rowspan="5">ResNet-18</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">81.00</td>
    <td class="tg-8d8j">68.17</td>
    <td class="tg-8d8j">89.91</td>
    <td class="tg-2b7s">86.62(85.73-87.55)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImageNet</td>
    <td class="tg-2b7s">81.88</td>
    <td class="tg-8d8j">73.49</td>
    <td class="tg-8d8j">87.70</td>
    <td class="tg-2b7s">88.11(87.18-89.03)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">82.48</td>
    <td class="tg-8d8j">72.27</td>
    <td class="tg-8d8j">89,57</td>
    <td class="tg-2b7s">88.28(87.28-89.26)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">82.45</td>
    <td class="tg-8d8j">74.16</td>
    <td class="tg-8d8j">88.21</td>
    <td class="tg-2b7s">88.41(87.54-89.26)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">82.62</td>
    <td class="tg-8d8j">74.28</td>
    <td class="tg-8d8j">88.42</td>
    <td class="tg-2b7s">88.5o(87.46-89.57)</td>
  </tr>
  <tr>
    <td class="tg-2b7s" rowspan="5">RcsNet-50</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">80.50</td>
    <td class="tg-8d8j">65.42</td>
    <td class="tg-8d8j">90.97</td>
    <td class="tg-2b7s">86.22(85.22-87.35)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImngeNet</td>
    <td class="tg-2b7s">81.73</td>
    <td class="tg-8d8j">68.36</td>
    <td class="tg-8d8j">91.01</td>
    <td class="tg-2b7s">87.87(86.85-88.85)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">82.35</td>
    <td class="tg-8d8j">73.12</td>
    <td class="tg-8d8j">88.76</td>
    <td class="tg-2b7s">87.89(87.06-88.88)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">81.10</td>
    <td class="tg-8d8j">69.03</td>
    <td class="tg-8d8j">89.48</td>
    <td class="tg-2b7s">87.14(86.10-88.22)</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">82.60</td>
    <td class="tg-8d8j">74.53</td>
    <td class="tg-8d8j">88.21</td>
    <td class="tg-2b7s">88.37(87.38-89.32)</td>
  </tr>
</tbody>
</table>


![image](https://user-images.githubusercontent.com/50255927/189317679-e3c22309-899b-4f8f-a689-d81e406376b5.png)

### 不同任务的结果 

注意:Lung为肺部**分割**任务,而TBX为**检测**任务
<table class="tg">
<thead>
  <tr>
    <th class="tg-7zrl" rowspan="2">Backbones</th>
    <th class="tg-7zrl" rowspan="2">Pre-train</th>
    <th class="tg-8d8j" colspan="2">Lung</th>
    <th class="tg-8d8j" colspan="3">TBX</th>
  </tr>
  <tr>
    <th class="tg-2b7s">Dice</th>
    <th class="tg-7zrl">mloU</th>
    <th class="tg-7zrl">mAP</th>
    <th class="tg-7zrl">AP-Active</th>
    <th class="tg-7zrl">AP-Latent</th>
  </tr>
</thead>
<tbody>
  <tr>
    <td class="tg-7zrl" rowspan="5">ResNet-18</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">95.24</td>
    <td class="tg-2b7s">94.00</td>
    <td class="tg-2b7s">30.71</td>
    <td class="tg-2b7s">56.71</td>
    <td class="tg-2b7s">4.72</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImageNet</td>
    <td class="tg-2b7s">95.26</td>
    <td class="tg-2b7s">94.10</td>
    <td class="tg-2b7s">29.46</td>
    <td class="tg-2b7s">56.27</td>
    <td class="tg-2b7s">2.66</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">95.31</td>
    <td class="tg-2b7s">94.14</td>
    <td class="tg-2b7s">36.00</td>
    <td class="tg-2b7s">67.17</td>
    <td class="tg-2b7s">4.84</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">95.14</td>
    <td class="tg-2b7s">93.90</td>
    <td class="tg-2b7s">34.70</td>
    <td class="tg-2b7s">63.43</td>
    <td class="tg-2b7s">5.97</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">95.37</td>
    <td class="tg-2b7s">94.22</td>
    <td class="tg-2b7s">36.71</td>
    <td class="tg-2b7s">64.84</td>
    <td class="tg-2b7s">8.59</td>
  </tr>
  <tr>
    <td class="tg-7zrl" rowspan="5"> <br>ResNet-50</td>
    <td class="tg-7zrl">Scratch</td>
    <td class="tg-2b7s">93.52</td>
    <td class="tg-2b7s">92.03</td>
    <td class="tg-2b7s">23.93</td>
    <td class="tg-2b7s">44.85</td>
    <td class="tg-2b7s">3.01</td>
  </tr>
  <tr>
    <td class="tg-7zrl">ImageNet</td>
    <td class="tg-2b7s">93.77</td>
    <td class="tg-2b7s">92.43</td>
    <td class="tg-2b7s">35.61</td>
    <td class="tg-2b7s">58.81</td>
    <td class="tg-2b7s">12.42</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MD-MoCo</td>
    <td class="tg-2b7s">94.33</td>
    <td class="tg-2b7s">93.04</td>
    <td class="tg-2b7s">36.78</td>
    <td class="tg-2b7s">64.37</td>
    <td class="tg-2b7s">9.18</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE--</td>
    <td class="tg-2b7s">95.04</td>
    <td class="tg-2b7s">93.82</td>
    <td class="tg-2b7s">35.14</td>
    <td class="tg-2b7s">57.32</td>
    <td class="tg-2b7s">12.97</td>
  </tr>
  <tr>
    <td class="tg-7zrl">MUSCLE</td>
    <td class="tg-2b7s">95.27</td>
    <td class="tg-2b7s">94.10</td>
    <td class="tg-2b7s">37.83</td>
    <td class="tg-2b7s">63.46</td>
    <td class="tg-2b7s">12.21</td>
  </tr>
</tbody>
</table>

![image](https://user-images.githubusercontent.com/50255927/189317479-14ecb3de-da80-4df3-b9a0-f1fece7b953f.png)

## Citation

如果我们的项目在学术上帮助到你,请考虑以下引用:
```
@inproceedings{liao2022muscle,  
title={MUSCLE: Multi-task Self-supervised Continual Learning to Pre-train Deep Models for X-ray Images of Multiple Body Parts},  
author={Weibin, Liao and Haoyi, Xiong and Qingzhong, Wang and Yan, Mo and Xuhong, Li and Yi, Liu and Zeyu, Chen and Siyu, Huang and Dejing, Dou},  
booktitle={International Conference on Medical Image Computing and Computer-Assisted Intervention},
year={2022},  
organization={Springer}  
}  
```