Unet.cpp 5.51 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#include <Unet.h>
#include <migraphx/onnx.hpp>
#include <migraphx/gpu/target.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/quantization.hpp>
#include <opencv2/dnn.hpp>
#include <CommonUtility.h>
#include <Filesystem.h>
#include <SimpleLog.h>

using namespace cv::dnn;

namespace migraphxSamples
{

Unet::Unet():logFile(NULL)
{
    
}

Unet::~Unet()
{
    configurationFile.release();
}

ErrorCode Unet::Initialize(InitializationParameterOfSegmentation initParamOfSegmentationUnet)
{
    // 初始化(获取日志文件,加载配置文件等)
    ErrorCode errorCode=DoCommonInitialization(initParamOfSegmentationUnet);
    if(errorCode!=SUCCESS)
    {
        LOG_ERROR(logFile,"fail to DoCommonInitialization\n");
        return errorCode;
    }
    LOG_INFO(logFile,"succeed to DoCommonInitialization\n");

    // 获取配置文件参数
    FileNode netNode = configurationFile["Unet"];
    std::string modelPath=initializationParameter.parentPath+(std::string)netNode["ModelPath"];

    // 加载模型
    if(Exists(modelPath)==false)
    {
        LOG_ERROR(logFile,"%s not exist!\n",modelPath.c_str());
        return MODEL_NOT_EXIST;
    }
    net = migraphx::parse_onnx(modelPath);       
    LOG_INFO(logFile,"succeed to load model: %s\n",GetFileName(modelPath).c_str());

    // 获取模型输入属性
    std::pair<std::string, migraphx::shape> inputAttribute=*(net.get_parameter_shapes().begin());
    inputName=inputAttribute.first;
    inputShape=inputAttribute.second;
    inputSize=cv::Size(inputShape.lens()[3],inputShape.lens()[2]);

    // 设置模型为GPU模式
    migraphx::target gpuTarget = migraphx::gpu::target{};

    // 编译模型
    migraphx::compile_options options;
    options.device_id=0;                          // 设置GPU设备,默认为0号设备
    options.offload_copy=true;                    // 设置offload_copy
    net.compile(gpuTarget,options);
    LOG_INFO(logFile,"succeed to compile model: %s\n",GetFileName(modelPath).c_str());

    // Run once by itself
    migraphx::parameter_map inputData;
    inputData[inputName]=migraphx::generate_argument(inputShape);
    net.eval(inputData);                          

    // log输出日志信息
    LOG_INFO(logFile,"InputSize:%dx%d\n",inputSize.width,inputSize.height);
    LOG_INFO(logFile,"InputName:%s\n",inputName.c_str());

    return SUCCESS;
}

ErrorCode Unet::DoCommonInitialization(InitializationParameterOfSegmentation initParamOfSegmentationUnet)
{
    initializationParameter = initParamOfSegmentationUnet;

    // 获取日志文件
    logFile=LogManager::GetInstance()->GetLogFile(initializationParameter.logName);

    // 加载配置文件
    std::string configFilePath=initializationParameter.configFilePath;
    if(!Exists(configFilePath)) 
    {
        LOG_ERROR(logFile, "no configuration file!\n");
        return CONFIG_FILE_NOT_EXIST;
    }
    if(!configurationFile.open(configFilePath, FileStorage::READ))
    {
        LOG_ERROR(logFile, "fail to open configuration file\n");
        return FAIL_TO_OPEN_CONFIG_FILE;
    }
    LOG_INFO(logFile, "succeed to open configuration file\n");

    // 修改父路径
    std::string &parentPath = initializationParameter.parentPath;
    if (!parentPath.empty())
    {
        if(!IsPathSeparator(parentPath[parentPath.size() - 1]))
        {
           parentPath+=PATH_SEPARATOR;
        }
    }
    
    return SUCCESS;
}

ErrorCode Unet::Segmentation(const cv::Mat &srcImage, cv::Mat &maskImage)
{
    if(srcImage.empty()||srcImage.type()!=CV_8UC3)
    {
        LOG_ERROR(logFile, "image error!\n");
        return IMAGE_ERROR;
    }

    // 图像预处理并转换为NCHW
    cv::Mat inputBlob;
    cv::dnn::blobFromImage(srcImage,
                    inputBlob,
                    1 / 255.0,
                    inputSize,
                    Scalar(0, 0, 0),
                    true,
                    false);

    // 输入数据
    migraphx::parameter_map inputData;
    inputData[inputName]= migraphx::argument{inputShape, (float*)inputBlob.data};

    // 推理
    std::vector<migraphx::argument> results = net.eval(inputData);

    // 获取输出节点的属性
    migraphx::argument result = results[0];                 // 获取第一个输出节点的数据
    migraphx::shape outputShape=result.get_shape();         // 输出节点的shape
    std::vector<std::size_t> outputSize=outputShape.lens(); // 每一维大小,维度顺序为(N,C,H,W) 
    int numberOfOutput=outputShape.elements();              // 输出节点元素的个数
    float *data = (float *)result.data();                   // 输出节点数据指针

    // 计算sigmoid值,并且当大于0.996时,值为1,当小于0.996时,值为0,存储在value_mask[]数组中
    int value_mask[numberOfOutput];
    for(int i=0; i<numberOfOutput; ++i)
    {
        float num  = Sigmoid(data[i]);
        if (num > 0.996)
        {
            value_mask[i] = 1;
        }
        else
        {
            value_mask[i] = 0;
        }
    }

    // 将对应的value_mask[]数组中的值按行依次赋值到outputImage对应位置处
    cv::Mat outputImage = cv::Mat_<int>(Size(outputShape.lens()[3], outputShape.lens()[2]), CV_32S);
    for(int i=0;i<outputShape.lens()[2];++i)
    {
        for(int j=0;j<outputShape.lens()[3];++j)
        {
            outputImage.at<int>(i,j)=value_mask[256*i+j];   //其中,256代表了outputShape.lens()[3]的值
        }
    }
    outputImage.convertTo(maskImage, CV_8U, 255.0);

    return SUCCESS;

}

float Unet::Sigmoid(float x)
{
    return (1 / (1 + exp(-x)));
}

}