single_dcu_train.py 7.15 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import AdamW, get_scheduler
from tqdm.auto import tqdm
from rouge import Rouge
import random
import numpy as np
import os
import json
from torch import nn
from datetime import datetime

def seed_everything(seed=1029):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True

class LCSTS(Dataset):
    def __init__(self, data_file):
        self.data = self.load_data(data_file)
    
    def load_data(self, data_file):
        Data = {}
        with open(data_file, 'rt', encoding='utf-8') as f:
            for idx, line in enumerate(f):
                if idx >= max_dataset_size:
                    break
                items = line.strip().split('!=!')
                assert len(items) == 2
                Data[idx] = {
                    'title': items[0],
                    'content': items[1]
                }
        return Data
    
    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]



def collate_fn(batch_samples):
    batch_inputs, batch_targets = [], []
    for sample in batch_samples:
        batch_inputs.append(sample['content'])
        batch_targets.append(sample['title'])
    batch_data = tokenizer(
        batch_inputs, 
        padding=True, 
        max_length=max_input_length,
        truncation=True, 
        return_tensors="pt"
    )
    with tokenizer.as_target_tokenizer():
        labels = tokenizer(
            batch_targets, 
            padding=True, 
            max_length=max_target_length,
            truncation=True, 
            return_tensors="pt"
        )["input_ids"]
        batch_data['decoder_input_ids'] = model.prepare_decoder_input_ids_from_labels(labels)
        end_token_index = torch.where(labels == tokenizer.eos_token_id)[1]
        for idx, end_idx in enumerate(end_token_index):
            labels[idx][end_idx+1:] = -100
        batch_data['labels'] = labels
    return batch_data


def train_loop(dataloader, model, optimizer, lr_scheduler, epoch, total_loss):
    progress_bar = tqdm(range(len(dataloader)))
    progress_bar.set_description(f'loss: {0:>7f}')
    finish_batch_num = (epoch-1) * len(dataloader)
    
    model.train()
    for batch, batch_data in enumerate(dataloader, start=1):
        batch_data = {k: v.to(device) for k, v in batch_data.items()}
        outputs = model(**batch_data)
        loss = outputs.loss
        loss = loss.mean()

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        lr_scheduler.step()

        total_loss += loss.item()
        progress_bar.set_description(f'loss: {total_loss/(finish_batch_num + batch):>7f}')
        progress_bar.update(1)
    return total_loss

def test_loop(dataloader, model):
    preds, labels = [], []
    
    model.eval()
    for batch_data in tqdm(dataloader):
        batch_data = {k: v.to(device) for k, v in batch_data.items()}
        with torch.no_grad():
            # 如果你使用了 DataParallel,你可以通过访问 model.module 来获取原始模型
            generated_tokens = model.generate(
                batch_data["input_ids"],
                attention_mask=batch_data["attention_mask"],
                max_length=max_target_length,
                num_beams=beam_size,
                no_repeat_ngram_size=no_repeat_ngram_size,
            ).cpu().numpy()
        if isinstance(generated_tokens, tuple):
            generated_tokens = generated_tokens[0]
        label_tokens = batch_data["labels"].cpu().numpy()

        decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
        label_tokens = np.where(label_tokens != -100, label_tokens, tokenizer.pad_token_id)
        decoded_labels = tokenizer.batch_decode(label_tokens, skip_special_tokens=True)

        preds += [' '.join(pred.strip()) for pred in decoded_preds]
        labels += [' '.join(label.strip()) for label in decoded_labels]
    scores = rouge.get_scores(hyps=preds, refs=labels, avg=True)
    result = {key: value['f'] * 100 for key, value in scores.items()}
    result['avg'] = np.mean(list(result.values()))
    print(f"Rouge1: {result['rouge-1']:>0.2f} Rouge2: {result['rouge-2']:>0.2f} RougeL: {result['rouge-l']:>0.2f}\n")
    return result


if __name__=='__main__':

    os.environ["HIP_VISIBLE_DEVICES"] = "0"

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f'Using {device} device')
    seed_everything(5)

    rouge = Rouge()

    max_dataset_size = 200000
    max_input_length = 512
    max_target_length = 32

    batch_size = 16
    learning_rate = 1e-5
    epoch_num = 1

    beam_size = 4
    no_repeat_ngram_size = 2

    folder_path = "/saves/train_dtk_weights"

    # 检查文件夹是否存在
    if not os.path.exists(folder_path):
        # 如果不存在,则创建文件夹
        os.makedirs(folder_path)

    train_data = LCSTS('/umt5/data/lcsts_tsv/data1.tsv')
    valid_data = LCSTS('/umt5/data/lcsts_tsv/data2.tsv')

    model_checkpoint = "/umt5/umt5_base"
    tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)

        # 检查是否有多个 GPU 可用
    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        # 如果有多个 GPUs,使用 nn.DataParallel 包装模型
        model = nn.DataParallel(model).to(device)
    else:
        model = model.to(device)
         
    
    train_dataloader = DataLoader(train_data, batch_size=batch_size, shuffle=True, collate_fn=collate_fn)
    valid_dataloader = DataLoader(valid_data, batch_size=batch_size, shuffle=False, collate_fn=collate_fn)


    optimizer = AdamW(model.parameters(), lr=learning_rate)
    lr_scheduler = get_scheduler(
        "linear",
        optimizer=optimizer,
        num_warmup_steps=0,
        num_training_steps=epoch_num*len(train_dataloader),
    )

    total_loss = 0.
    best_avg_rouge = 0.
    for t in range(epoch_num):
        print(f"Epoch {t+1}/{epoch_num}\n-------------------------------")
        total_loss = train_loop(train_dataloader, model, optimizer, lr_scheduler, t+1, total_loss)
        valid_rouge = test_loop(valid_dataloader, model)
        rouge_avg = valid_rouge['avg']
        if rouge_avg > best_avg_rouge:
            best_avg_rouge = rouge_avg
            print('saving new weights...\n')
            weight_path = f'/utm5/saves/train_dtk_weights/epoch_{t+1}_valid_rouge_{rouge_avg:0.4f}_model_dtk_weights.bin'
            torch.save(model.state_dict(), weight_path)
            # 加载训练后的权重
            state_dict = torch.load(weight_path)
            model.load_state_dict(state_dict)
            # 获取当前的日期和时间
            now = datetime.now()
            timestamp = now.strftime("%Y%m%d_%H%M%S")
            new_model_path = f'saves/umt5_{timestamp}'
            model.module.save_pretrained(new_model_path)
            tokenizer.save_pretrained(new_model_path)
    print("Done!")