multi_dcu_test.py 5.68 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import AdamW, get_scheduler
from tqdm.auto import tqdm
from rouge import Rouge
import random
import numpy as np
import os
import json
from torch import nn

def seed_everything(seed=1029):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.deterministic = True


class LCSTS(Dataset):
    def __init__(self, data_file):
        self.data = self.load_data(data_file)
    
    def load_data(self, data_file):
        Data = {}
        with open(data_file, 'rt', encoding='utf-8') as f:
            for idx, line in enumerate(f):
                if idx >= max_dataset_size:
                    break
                items = line.strip().split('!=!')
                assert len(items) == 2
                Data[idx] = {
                    'title': items[0],
                    'content': items[1]
                }
        return Data
    
    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        return self.data[idx]



def collate_fn(batch_samples):
    batch_inputs, batch_targets = [], []
    for sample in batch_samples:
        batch_inputs.append(sample['content'])
        batch_targets.append(sample['title'])
    batch_data = tokenizer(
        batch_inputs, 
        padding=True, 
        max_length=max_input_length,
        truncation=True, 
        return_tensors="pt"
    )
    with tokenizer.as_target_tokenizer():
        labels = tokenizer(
            batch_targets, 
            padding=True, 
            max_length=max_target_length,
            truncation=True, 
            return_tensors="pt"
        )["input_ids"]
        batch_data['decoder_input_ids'] =  decoder_input_ids = model.module.prepare_decoder_input_ids_from_labels(labels)
        end_token_index = torch.where(labels == tokenizer.eos_token_id)[1]
        for idx, end_idx in enumerate(end_token_index):
            labels[idx][end_idx+1:] = -100
        batch_data['labels'] = labels
    return batch_data


if __name__=='__main__':

    os.environ["HIP_VISIBLE_DEVICES"] = "4,5"

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f'Using {device} device')
    seed_everything(5)

    max_dataset_size = 200000
    max_input_length = 512
    max_target_length = 32

    batch_size = 16
    learning_rate = 1e-5
    epoch_num = 3

    beam_size = 4
    no_repeat_ngram_size = 2
    test_data = LCSTS('/umt5/data/lcsts_tsv/data3.tsv')
    test_dataloader = DataLoader(test_data, batch_size=16, shuffle=False, collate_fn=collate_fn)

    model_checkpoint = "/umt5/utm5_base"
    trained_model_weights = '/umt5/saves/train_dtk_weights/epoch_1_valid_rouge_23.4347_model_dtk_weights.bin'
    tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
    model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
    model = model.to(device)

    # 检查是否有多个 GPU 可用
    if torch.cuda.device_count() > 1:
        print("Let's use", torch.cuda.device_count(), "GPUs!")
        # 如果有多个 GPUs,使用 nn.DataParallel 包装模型
        model = nn.DataParallel(model)

    model.load_state_dict(torch.load(trained_model_weights))
    model.eval()
    rouge = Rouge()

    with torch.no_grad():
        print('evaluating on test set...')
        sources, preds, labels = [], [], []
        for batch_data in tqdm(test_dataloader):
            batch_data = {k: v.to(device) for k, v in batch_data.items()}  # 将数据移动到设备上
            generated_tokens = model.module.generate(
                batch_data["input_ids"],
                attention_mask=batch_data["attention_mask"],
                max_length=max_target_length,
                num_beams=beam_size,
                no_repeat_ngram_size=no_repeat_ngram_size,
            ).cpu().numpy()
            if isinstance(generated_tokens, tuple):
                generated_tokens = generated_tokens[0]
            label_tokens = batch_data["labels"].cpu().numpy()

            decoded_sources = tokenizer.batch_decode(
                batch_data["input_ids"].cpu().numpy(), 
                skip_special_tokens=True, 
                use_source_tokenizer=True
            )
            decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
            label_tokens = np.where(label_tokens != -100, label_tokens, tokenizer.pad_token_id)
            decoded_labels = tokenizer.batch_decode(label_tokens, skip_special_tokens=True)

            sources += [source.strip() for source in decoded_sources]
            preds += [pred.strip() for pred in decoded_preds]
            labels += [label.strip() for label in decoded_labels]
        scores = rouge.get_scores(
            hyps=[' '.join(pred) for pred in preds], 
            refs=[' '.join(label) for label in labels], 
            avg=True
        )
        rouges = {key: value['f'] * 100 for key, value in scores.items()}
        rouges['avg'] = np.mean(list(rouges.values()))
        print(f"Test Rouge1: {rouges['rouge-1']:>0.2f} Rouge2: {rouges['rouge-2']:>0.2f} RougeL: {rouges['rouge-l']:>0.2f}\n")
        results = []
        print('saving predicted results...')
        for source, pred, label in zip(sources, preds, labels):
            results.append({
                "document": source, 
                "prediction": pred, 
                "summarization": label
            })
        with open('test_data_pred.json', 'wt', encoding='utf-8') as f:
            for exapmle_result in results:
                f.write(json.dumps(exapmle_result, ensure_ascii=False) + '\n')