README_v1.md 28.6 KB
Newer Older
mashun1's avatar
uitars  
mashun1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
<!-- <p align="center">
  <img alt="UI-TARS"  width="260" src="figures/icon.png">
</p>

# UI-TARS: Pioneering Automated GUI Interaction with Native Agents -->
![Local Image](figures/writer.png)
<p align="center">
        🤗 <a href="https://huggingface.co/bytedance-research/UI-TARS-7B-DPO">Hugging Face Models</a>&nbsp&nbsp | &nbsp&nbsp🤖 <a href="https://www.modelscope.cn/models/bytedance-research/UI-TARS-7B-DPO">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp 📑 <a href="https://arxiv.org/abs/2501.12326">Paper</a> &nbsp&nbsp  |&nbsp&nbsp</a>
🖥️ <a href="https://github.com/bytedance/UI-TARS-desktop">UI-TARS-desktop</a>&nbsp&nbsp  <br>🏄 <a href="https://github.com/web-infra-dev/Midscene">Midscene (Browser Automation) </a>&nbsp&nbsp | &nbsp&nbsp🤗 <a href="https://huggingface.co/spaces/bytedance-research/UI-TARS">Space</a>&nbsp&nbsp | &nbsp&nbsp🫨 <a href="https://discord.gg/pTXwYVjfcs">Discord</a>&nbsp&nbsp
</p>

We also offer a **UI-TARS-desktop** version, which can operate on your **local personal device**. To use it, please visit [https://github.com/bytedance/UI-TARS-desktop](https://github.com/bytedance/UI-TARS-desktop). To use UI-TARS in web automation, you may refer to the open-source project [Midscene.js](https://github.com/web-infra-dev/Midscene).
### ⚠️ Important Announcement: GGUF Model Performance

The **GGUF model** has undergone quantization, but unfortunately, its performance cannot be guaranteed. As a result, we have decided to **downgrade** it. 

💡 **Alternative Solution**:  
You can use **[Cloud Deployment](#cloud-deployment)** or **[Local Deployment [vLLM]](#local-deployment-vllm)**(If you have enough GPU resources) instead. 

We appreciate your understanding and patience as we work to ensure the best possible experience.

## Updates
- ✨ We updated the OSWorld inference scripts from the original official [OSWorld repository](https://github.com/xlang-ai/OSWorld/blob/main/run_uitars.py). Now, you can use the OSWorld official inference scripts for deployment and we've provided [trajectory examples](https://drive.google.com/file/d/1N9dYzAB9xSiHwE9VSdEi9xSpB9eXfVZT/view?usp=sharing) for OSWorld to help you get started.
- 🚀 01.25: We updated the **[Cloud Deployment](#cloud-deployment)** section in the 中文版: [GUI模型部署教程](https://bytedance.sg.larkoffice.com/docx/TCcudYwyIox5vyxiSDLlgIsTgWf#U94rdCxzBoJMLex38NPlHL21gNb) with new information related to the ModelScope platform. You can now use the ModelScope platform for deployment.



## Overview
UI-TARS is a next-generation native GUI agent model designed to interact seamlessly with graphical user interfaces (GUIs) using human-like perception, reasoning, and action capabilities. Unlike traditional modular frameworks, UI-TARS integrates all key components—perception, reasoning, grounding, and memory—within a single vision-language model (VLM), enabling end-to-end task automation without predefined workflows or manual rules.
![Local Image](figures/UI-TARS-vs-Previous-SOTA.png)
![Local Image](figures/UI-TARS.png)


## Core Features
### Perception
- **Comprehensive GUI Understanding**: Processes multimodal inputs (text, images, interactions) to build a coherent understanding of interfaces.
- **Real-Time Interaction**: Continuously monitors dynamic GUIs and responds accurately to changes in real-time.

### Action
- **Unified Action Space**: Standardized action definitions across platforms (desktop, mobile, and web).
- **Platform-Specific Actions**: Supports additional actions like hotkeys, long press, and platform-specific gestures.

### Reasoning
- **System 1 & System 2 Reasoning**: Combines fast, intuitive responses with deliberate, high-level planning for complex tasks.
- **Task Decomposition & Reflection**: Supports multi-step planning, reflection, and error correction for robust task execution.

### Memory
- **Short-Term Memory**: Captures task-specific context for situational awareness.
- **Long-Term Memory**: Retains historical interactions and knowledge for improved decision-making.

## Capabilities
- **Cross-Platform Interaction**: Supports desktop, mobile, and web environments with a unified action framework.
- **Multi-Step Task Execution**: Trained to handle complex tasks through multi-step trajectories and reasoning.
- **Learning from Synthetic and Real Data**: Combines large-scale annotated and synthetic datasets for improved generalization and robustness.

## Performance
**Perception Capabilty Evaluation**
| Model                     | VisualWebBench | WebSRC  | SQAshort |
|---------------------------|---------------|---------|----------|
| Qwen2-VL-7B              | 73.3          | 81.8    | 84.9     |
| Qwen-VL-Max              | 74.1          | 91.1    | 78.6     |
| Gemini-1.5-Pro           | 75.4          | 88.9    | 82.2     |
| UIX-Qwen2-7B             | 75.9          | 82.9    | 78.8     |
| Claude-3.5-Sonnet        | 78.2          | 90.4    | 83.1     |
| GPT-4o                   | 78.5          | 87.7    | 82.3     |
| **UI-TARS-2B**          | 72.9          | 89.2    | 86.4     |
| **UI-TARS-7B**          | 79.7          | **93.6** | 87.7     |
| **UI-TARS-72B**         | **82.8**      | 89.3    | **88.6** |

**Grounding Capability Evaluation**
- **ScreenSpot Pro**

| Agent Model              | Dev-Text | Dev-Icon | Dev-Avg | Creative-Text | Creative-Icon | Creative-Avg | CAD-Text | CAD-Icon | CAD-Avg | Scientific-Text | Scientific-Icon | Scientific-Avg | Office-Text | Office-Icon | Office-Avg | OS-Text | OS-Icon | OS-Avg | Avg-Text | Avg-Icon | Avg |
|--------------------------|----------|----------|----------|--------------|--------------|--------------|---------|---------|---------|---------------|---------------|---------------|------------|------------|------------|--------|--------|--------|---------|---------|------|
| QwenVL-7B               | 0.0      | 0.0      | 0.0      | 0.0          | 0.0          | 0.0          | 0.0     | 0.0     | 0.0     | 0.7           | 0.0           | 0.4           | 0.0        | 0.0        | 0.0        | 0.0    | 0.0    | 0.0    | 0.1     | 0.0     | **0.1**  |
| GPT-4o                  | 1.3      | 0.0      | 0.7      | 1.0          | 0.0          | 0.6          | 2.0     | 0.0     | 1.5     | 2.1           | 0.0           | 1.2           | 1.1        | 0.0        | 0.9        | 0.0    | 0.0    | 0.0    | 1.3     | 0.0     | **0.8**  |
| SeeClick                | 0.6      | 0.0      | 0.3      | 1.0          | 0.0          | 0.6          | 2.5     | 0.0     | 1.9     | 3.5           | 0.0           | 2.0           | 1.1        | 0.0        | 0.9        | 2.8    | 0.0    | 1.5    | 1.8     | 0.0     | **1.1**  |
| Qwen2-VL-7B             | 2.6      | 0.0      | 1.3      | 1.5          | 0.0          | 0.9          | 0.5     | 0.0     | 0.4     | 6.3           | 0.0           | 3.5           | 3.4        | 1.9        | 3.0        | 0.9    | 0.0    | 0.5    | 2.5     | 0.2     | **1.6**  |
| OS-Atlas-4B            | 7.1      | 0.0      | 3.7      | 3.0          | 1.4          | 2.3          | 2.0     | 0.0     | 1.5     | 9.0           | 5.5           | 7.5           | 5.1        | 3.8        | 4.8        | 5.6    | 0.0    | 3.1    | 5.0     | 1.7     | **3.7**  |
| ShowUI-2B              | 16.9     | 1.4      | 9.4      | 9.1          | 0.0          | 5.3          | 2.5     | 0.0     | 1.9     | 13.2          | 7.3           | 10.6          | 15.3       | 7.5        | 13.5       | 10.3   | 2.2    | 6.6    | 10.8    | 2.6     | **7.7**  |
| CogAgent-18B           | 14.9     | 0.7      | 8.0      | 9.6          | 0.0          | 5.6          | 7.1     | 3.1     | 6.1     | 22.2          | 1.8           | 13.4          | 13.0       | 0.0        | 10.0       | 5.6    | 0.0    | 3.1    | 12.0    | 0.8     | **7.7**  |
| Aria-UI                | 16.2     | 0.0      | 8.4      | 23.7         | 2.1          | 14.7         | 7.6     | 1.6     | 6.1     | 27.1          | 6.4           | 18.1          | 20.3       | 1.9        | 16.1       | 4.7    | 0.0    | 2.6    | 17.1    | 2.0     | **11.3**  |
| UGround-7B             | 26.6     | 2.1      | 14.7     | 27.3         | 2.8          | 17.0         | 14.2    | 1.6     | 11.1    | 31.9          | 2.7           | 19.3          | 31.6       | 11.3       | 27.0       | 17.8   | 0.0    | 9.7    | 25.0    | 2.8     | **16.5**  |
| Claude Computer Use      | 22.0  | 3.9   | 12.6  | 25.9  | 3.4   | 16.8  | 14.5  | 3.7   | 11.9  | 33.9  | 15.8  | 25.8  | 30.1  | 16.3  | 26.9  | 11.0  | 4.5   | 8.1   | 23.4  | 7.1  | **17.1**  |
| OS-Atlas-7B              | 33.1  | 1.4   | 17.7  | 28.8  | 2.8   | 17.9  | 12.2  | 4.7   | 10.3  | 37.5  | 7.3   | 24.4  | 33.9  | 5.7   | 27.4  | 27.1  | 4.5   | 16.8  | 28.1  | 4.0  | **18.9**  |
| UGround-V1-7B            | -     | -     | 35.5  | -     | -     | 27.8  | -     | -     | 13.5  | -     | -     | 38.8  | -     | -     | 48.8  | -     | -     | 26.1  | -     | -    | **31.1**  |
| **UI-TARS-2B**        | 47.4     | 4.1      | 26.4     | 42.9         | 6.3          | 27.6         | 17.8    | 4.7     | 14.6    | 56.9          | 17.3          | 39.8          | 50.3       | 17.0       | 42.6       | 21.5   | 5.6    | 14.3   | 39.6    | 8.4     | **27.7**  |
| **UI-TARS-7B**        | 58.4     | 12.4     | 36.1     | 50.0         | 9.1          | 32.8         | **20.8**| 9.4     | **18.0**| 63.9          | **31.8**      | **50.0**      | **63.3**   | 20.8       | 53.5       | 30.8   | **16.9**| 24.5   | 47.8    | 16.2    | **35.7**  |
| **UI-TARS-72B**       | **63.0** | **17.3** | **40.8** | **57.1**     | **15.4**     | **39.6**     | 18.8    | **12.5**| 17.2    | **64.6**      | 20.9          | 45.7          | **63.3**   | **26.4**   | **54.8**   | **42.1**| 15.7    | **30.1**| **50.9**| **17.5**| **38.1**  |


- **ScreenSpot**

| Method |  Mobile-Text | Mobile-Icon/Widget | Desktop-Text | Desktop-Icon/Widget | Web-Text | Web-Icon/Widget | Avg |
|--------|-------------|-------------|-------------|-------------|-------------|---------|---------|
| **Agent Framework**  | | | | | | | |
| GPT-4 (SeeClick) |  76.6 | 55.5 | 68.0 | 28.6 | 40.9 | 23.3 | **48.8** |
| GPT-4 (OmniParser)  | 93.9 | 57.0 | 91.3 | 63.6 | 81.3 | 51.0 | **73.0** |
| GPT-4 (UGround-7B)  | 90.1 | 70.3 | 87.1 | 55.7 | 85.7 | 64.6 | **75.6** |
| GPT-4o (SeeClick)  | 81.0 | 59.8 | 69.6 | 33.6 | 43.9 | 26.2 | **52.3** |
| GPT-4o (UGround-7B)  | 93.4 | 76.9 | 92.8 | 67.9 | 88.7 | 68.9 | **81.4** |
| **Agent Model**   | | | | | | | |
| GPT-4  | 22.6 | 24.5 | 20.2 | 11.8 | 9.2 | 8.8 | **16.2** |
| GPT-4o  | 20.2 | 24.9 | 21.1 | 23.6 | 12.2 | 7.8 | **18.3** |
| CogAgent  | 67.0 | 24.0 | 74.2 | 20.0 | 70.4 | 28.6 | **47.4** |
| SeeClick  | 78.0 | 52.0 | 72.2 | 30.0 | 55.7 | 32.5 | **53.4** |
| Qwen2-VL  | 75.5 | 60.7 | 76.3 | 54.3 | 35.2 | 25.7 | **55.3** |
| UGround-7B  | 82.8 | 60.3 | 82.5 | 63.6 | 80.4 | 70.4 | **73.3** |
| Aguvis-G-7B  | 88.3 | 78.2 | 88.1 | 70.7 | 85.7 | 74.8 | **81.8** |
| OS-Atlas-7B | 93.0 | 72.9 | 91.8 | 62.9 | 90.9 | 74.3 | **82.5** |
| Claude Computer Use  | - | - | - | - | - | - | **83.0** |
| Gemini 2.0 (Project Mariner)  | - | - | - | - | - | - | **84.0** |
| Aguvis-7B  | **95.6** | 77.7 | 93.8 | 67.1 | 88.3 | 75.2 | **84.4** |
| Aguvis-72B  | 94.5 | **85.2** | 95.4 | 77.9 | **91.3** | **85.9** | **89.2** |
| **Our Model**   | | | | | | | |
| **UI-TARS-2B**  | 93.0 | 75.5 | 90.7 | 68.6 | 84.3 | 74.8 | **82.3** |
| **UI-TARS-7B**  | 94.5 | **85.2** | **95.9** | 85.7 | 90.0 | 83.5 | **89.5** |
| **UI-TARS-72B**  | 94.9 | 82.5 | 89.7 | **88.6** | 88.7 | 85.0 | **88.4** |


- **ScreenSpot v2**

| Method |  Mobile-Text | Mobile-Icon/Widget | Desktop-Text | Desktop-Icon/Widget | Web-Text | Web-Icon/Widget | Avg |
|--------|-------------|-------------|-------------|-------------|-------------|---------|---------|
| **Agent Framework**  | | | | | | | |
| GPT-4o (SeeClick)  | 85.2 | 58.8 | 79.9 | 37.1 | 72.7 | 30.1 | **63.6** |
| GPT-4o (OS-Atlas-4B)  | 95.5 | 75.8 | 79.4 | 49.3 | 90.2 | 66.5 | **79.1** |
| GPT-4o (OS-Atlas-7B)  | 96.2 | 83.4 | 89.7 | 69.3 | **94.0** | 79.8 | **87.1** |
| **Agent Model**  | | | | | | | |
| SeeClick  | 78.4 | 50.7 | 70.1 | 29.3 | 55.2 | 32.5 | **55.1** |
| OS-Atlas-4B  | 87.2 | 59.7 | 72.7 | 46.4 | 85.9 | 63.1 | **71.9** |
| OS-Atlas-7B  | 95.2 | 75.8 | 90.7 | 63.6 | 90.6 | 77.3 | **84.1** |
| **Our Model**  | | | | | | | |
| **UI-TARS-2B**  | 95.2 | 79.1 | 90.7 | 68.6 | 87.2 | 78.3 | **84.7** |
| **UI-TARS-7B** | **96.9** | **89.1** | **95.4** | 85.0 | 93.6 | 85.2 | **91.6** |
| **UI-TARS-72B**  | 94.8 | 86.3 | 91.2 | **87.9** | 91.5 | **87.7** | **90.3** |


**Offline Agent Capability Evaluation**
- **Multimodal Mind2Web**

| Method |  Cross-Task Ele.Acc | Cross-Task Op.F1 | Cross-Task Step SR | Cross-Website Ele.Acc | Cross-Website Op.F1 | Cross-Website Step SR | Cross-Domain Ele.Acc | Cross-Domain Op.F1 | Cross-Domain Step SR |
|--------|----------------------|-------------------|--------------------|----------------------|--------------------|-------------------|--------------------|-------------------|-------------------|
| **Agent Framework**  | | | | | | | | | |
| GPT-4o (SeeClick)  | 32.1 | - | - | 33.1 | - | - | 33.5 | - | - |
| GPT-4o (UGround)  | 47.7 | - | - | 46.0 | - | - | 46.6 | - | - |
| GPT-4o (Aria-UI)  | 57.6 | - | - | 57.7 | - | - | 61.4 | - | - |
| GPT-4V (OmniParser)  | 42.4 | 87.6 | 39.4 | 41.0 | 84.8 | 36.5 | 45.5 | 85.7 | 42.0 |
| **Agent Model** |  | | | | | | | | |
| GPT-4o  | 5.7 | 77.2 | 4.3 | 5.7 | 79.0 | 3.9 | 5.5 | 86.4 | 4.5 |
| GPT-4 (SOM)  | 29.6 | - | 20.3 | 20.1 | - | 13.9 | 27.0 | - | 23.7 |
| GPT-3.5 (Text-only)  | 19.4 | 59.2 | 16.8 | 14.9 | 56.5 | 14.1 | 25.2 | 57.9 | 24.1 |
| GPT-4 (Text-only)  | 40.8 | 63.1 | 32.3 | 30.2 | 61.0 | 27.0 | 35.4 | 61.9 | 29.7 |
| Claude  | 62.7 | 84.7 | 53.5 | 59.5 | 79.6 | 47.7 | 64.5 | 85.4 | 56.4 |
| Aguvis-7B  | 64.2 | 89.8 | 60.4 | 60.7 | 88.1 | 54.6 | 60.4 | 89.2 | 56.6 |
| CogAgent  | - | - | 62.3 | - | - | 54.0 | - | - | 59.4 |
| Aguvis-72B  | 69.5 | 90.8 | 64.0 | 62.6 | 88.6 | 56.5 | 63.5 | 88.5 | 58.2 |
| **Our Model**  | | | | | | | | | |
| **UI-TARS-2B**  | 62.3 | 90.0 | 56.3 | 58.5 | 87.2 | 50.8 | 58.8 | 89.6 | 52.3 |
| **UI-TARS-7B**  | 73.1 | 92.2 | 67.1 | 68.2 | 90.9 | 61.7 | 66.6 | 90.9 | 60.5 |
| **UI-TARS-72B**  | **74.7** | **92.5** | **68.6** | **72.4** | **91.2** | **63.5** | **68.9** | **91.8** | **62.1** |


- **Android Control and GUI Odyssey**

| Agent Models        | AndroidControl-Low Type | AndroidControl-Low Grounding | AndroidControl-Low SR | AndroidControl-High Type | AndroidControl-High Grounding | AndroidControl-High SR | GUIOdyssey Type | GUIOdyssey Grounding | GUIOdyssey SR |
|---------------------|----------------------|----------------------|----------------|----------------------|----------------------|----------------|----------------|----------------|----------------|
| Claude             | 74.3                 | 0.0                  | 19.4           | 63.7                 | 0.0                  | 12.5           | 60.9           | 0.0            | 3.1            |
| GPT-4o             | 74.3                 | 0.0                  | 19.4           | 66.3                 | 0.0                  | 20.8           | 34.3           | 0.0            | 3.3            |
| SeeClick           | 93.0                 | 73.4                 | 75.0           | 82.9                 | 62.9                 | 59.1           | 71.0           | 52.4           | 53.9           |
| InternVL-2-4B      | 90.9                 | 84.1                 | 80.1           | 84.1                 | 72.7                 | 66.7           | 82.1           | 55.5           | 51.5           |
| Qwen2-VL-7B       | 91.9                 | 86.5                 | 82.6           | 83.8                 | 77.7                 | 69.7           | 83.5           | 65.9           | 60.2           |
| Aria-UI           | --                   | 87.7                 | 67.3           | --                   | 43.2                 | 10.2           | --             | 86.8           | 36.5           |
| OS-Atlas-4B       | 91.9                 | 83.8                 | 80.6           | 84.7                 | 73.8                 | 67.5           | 83.5           | 61.4           | 56.4           |
| OS-Atlas-7B       | 93.6                 | 88.0                 | 85.2           | 85.2                 | 78.5                 | 71.2           | 84.5           | 67.8           | 62.0           |
| Aguvis-7B         | --                   | --                   | 80.5           | --                   | --                   | 61.5           | --             | --             | --             |
| Aguvis-72B        | --                   | --                   | 84.4           | --                   | --                   | 66.4           | --             | --             | --             |
| **UI-TARS-2B**   | **98.1**             | 87.3                 | 89.3           | 81.2                 | 78.4                 | 68.9           | 93.9           | 86.8           | 83.4           |
| **UI-TARS-7B**   | 98.0                 | 89.3                 | 90.8           | 83.7                 | 80.5                 | 72.5           | 94.6           | 90.1           | 87.0           |
| **UI-TARS-72B**  | **98.1**             | **89.9**             | **91.3**       | **85.2**             | **81.5**             | **74.7**       | **95.4**       | **91.4**       | **88.6**       |

**Online Agent Capability Evaluation**

| Method |  OSWorld (Online) | AndroidWorld (Online) |
|--------|-------------------|------------------|
| **Agent Framework**  | | |
| GPT-4o (UGround)  | - | 32.8 |
| GPT-4o (Aria-UI)  | 15.2 | 44.8 |
| GPT-4o (Aguvis-7B)  | 14.8 | 37.1 |
| GPT-4o (Aguvis-72B)  | 17.0 | - |
| GPT-4o (OS-Atlas-7B)  | 14.6 | - |
| **Agent Model**  | | |
| GPT-4o  | 5.0 | 34.5 (SoM) |
| Gemini-Pro-1.5  | 5.4 | 22.8 (SoM) |
| Aguvis-72B  | 10.3 | 26.1 |
| Claude Computer-Use  | 14.9 (15 steps) | 27.9 |
| Claude Computer-Use  | 22.0 (50 steps) | - |
| **Our Model**  | | |
| **UI-TARS-7B-SFT**  | 17.7 (15 steps) | 33.0 |
| **UI-TARS-7B-DPO**  | 18.7 (15 steps) | - |
| **UI-TARS-72B-SFT**  | 18.8 (15 steps) | **46.6** |
| **UI-TARS-72B-DPO**  | **22.7** (15 steps) | - |
| **UI-TARS-72B-DPO**  | **24.6** (50 steps) | - |

## Deployment

### Cloud Deployment
We recommend using HuggingFace Inference Endpoints for fast deployment.
We provide two docs for reference:

English version: [GUI Model Deployment Guide](https://juniper-switch-f10.notion.site/GUI-Model-Deployment-Guide-17b5350241e280058e98cea60317de71)

中文版: [GUI模型部署教程](https://bytedance.sg.larkoffice.com/docx/TCcudYwyIox5vyxiSDLlgIsTgWf#U94rdCxzBoJMLex38NPlHL21gNb)

### Local Deployment [Transformers]
We follow the same way as Qwen2-VL. Check this [tutorial](https://github.com/QwenLM/Qwen2-VL?tab=readme-ov-file#using---transformers-to-chat) for more details.

### Local Deployment [vLLM]
We recommend using vLLM for fast deployment and inference. You need to use `vllm>=0.6.1`.
```bash
pip install -U transformers
VLLM_VERSION=0.6.6
CUDA_VERSION=cu124
pip install vllm==${VLLM_VERSION} --extra-index-url https://download.pytorch.org/whl/${CUDA_VERSION}

```
#### Download the Model
We provide three model sizes on Hugging Face: **2B**, **7B**, and **72B**. To achieve the best performance, we recommend using the **7B-DPO** or **72B-DPO** model (depends on your GPU configuration):

- [2B-SFT](https://huggingface.co/bytedance-research/UI-TARS-2B-SFT)
- [7B-SFT](https://huggingface.co/bytedance-research/UI-TARS-7B-SFT)
- [7B-DPO](https://huggingface.co/bytedance-research/UI-TARS-7B-DPO)
- [72B-SFT](https://huggingface.co/bytedance-research/UI-TARS-72B-SFT)
- [72B-DPO](https://huggingface.co/bytedance-research/UI-TARS-72B-DPO)


#### Start an OpenAI API Service
Run the command below to start an OpenAI-compatible API service. It is recommended to set the tensor parallel size `-tp=1` for 7B models and `-tp=4` for 72B models.

```bash
python -m vllm.entrypoints.openai.api_server --served-model-name ui-tars \
    --model <path to your model> --limit-mm-per-prompt image=5 -tp <tp>
```

Then you can use the chat API as below with the gui prompt (choose from mobile or computer) and base64-encoded local images (see [OpenAI API protocol document](https://platform.openai.com/docs/guides/vision/uploading-base-64-encoded-images) for more details), you can also use it in [UI-TARS-desktop](https://github.com/bytedance/UI-TARS-desktop):
```python
import base64
from openai import OpenAI


instruction = "search for today's weather"
screenshot_path = "screenshot.png"
client = OpenAI(
    base_url="http://127.0.0.1:8000/v1",
    api_key="empty",
)

## Below is the prompt for mobile
prompt = r"""You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. 

## Output Format
```\nThought: ...
Action: ...\n```

## Action Space

click(start_box='<|box_start|>(x1,y1)<|box_end|>')
left_double(start_box='<|box_start|>(x1,y1)<|box_end|>')
right_single(start_box='<|box_start|>(x1,y1)<|box_end|>')
drag(start_box='<|box_start|>(x1,y1)<|box_end|>', end_box='<|box_start|>(x3,y3)<|box_end|>')
hotkey(key='')
type(content='') #If you want to submit your input, use \"\
\" at the end of `content`.
scroll(start_box='<|box_start|>(x1,y1)<|box_end|>', direction='down or up or right or left')
wait() #Sleep for 5s and take a screenshot to check for any changes.
finished()
call_user() # Submit the task and call the user when the task is unsolvable, or when you need the user's help.


## Note
- Use Chinese in `Thought` part.
- Summarize your next action (with its target element) in one sentence in `Thought` part.

## User Instruction
"""

with open(screenshot_path, "rb") as image_file:
    encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
response = client.chat.completions.create(
    model="ui-tars",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": prompt + instruction},
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_string}"}},
            ],
        },
    ],
    frequency_penalty=1,
    max_tokens=128,
)
print(response.choices[0].message.content)
```

For single step grounding task or inference on grounding dataset such as Seeclick, kindly refer to the following script:
```python
import base64
from openai import OpenAI


instruction = "search for today's weather"
screenshot_path = "screenshot.png"
client = OpenAI(
    base_url="http://127.0.0.1:8000/v1",
    api_key="empty",
)

## Below is the prompt for mobile
prompt = r"""Output only the coordinate of one point in your response. What element matches the following task: """

with open(screenshot_path, "rb") as image_file:
    encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
response = client.chat.completions.create(
    model="ui-tars",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{encoded_string}"}},
                {"type": "text", "text": prompt + instruction}
            ],
        },
    ],
    frequency_penalty=1,
    max_tokens=128,
)
print(response.choices[0].message.content)
```

### Prompt Templates
We provide two prompt templates currently for stable running and performance, one for mobile scene and one for personal computer scene.
- Prompt template for mobile:
```python
## Below is the prompt for mobile
prompt = r"""You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. 

## Output Format
```\nThought: ...
Action: ...\n```

## Action Space
click(start_box='<|box_start|>(x1,y1)<|box_end|>')
long_press(start_box='<|box_start|>(x1,y1)<|box_end|>', time='')
type(content='')
scroll(start_box='<|box_start|>(x1,y1)<|box_end|>', end_box='<|box_start|>(x3,y3)<|box_end|>')
press_home()
press_back()
finished(content='') # Submit the task regardless of whether it succeeds or fails.

## Note
- Use English in `Thought` part.

- Write a small plan and finally summarize your next action (with its target element) in one sentence in `Thought` part.

## User Instruction
"""
```

- Prompt template for computer:
```python
## Below is the prompt for computer
prompt = r"""You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform the next action to complete the task. 

## Output Format
```\nThought: ...
Action: ...\n```

## Action Space

click(start_box='<|box_start|>(x1,y1)<|box_end|>')
left_double(start_box='<|box_start|>(x1,y1)<|box_end|>')
right_single(start_box='<|box_start|>(x1,y1)<|box_end|>')
drag(start_box='<|box_start|>(x1,y1)<|box_end|>', end_box='<|box_start|>(x3,y3)<|box_end|>')
hotkey(key='')
type(content='') #If you want to submit your input, use \"\
\" at the end of `content`.
scroll(start_box='<|box_start|>(x1,y1)<|box_end|>', direction='down or up or right or left')
wait() #Sleep for 5s and take a screenshot to check for any changes.
finished()
call_user() # Submit the task and call the user when the task is unsolvable, or when you need the user's help.


## Note
- Use Chinese in `Thought` part.
- Summarize your next action (with its target element) in one sentence in `Thought` part.

## User Instruction
"""
```

### Local Deployment [Ollama]
<!-- Ollama can deploy the model via gguf format. Bugs exist for safetensors. -->Ollama will be coming soon. Please be patient and wait~ 😊
<!-- #### Get the model in GGUF format
We provide 2B and 7B model in [GGUF](https://huggingface.co/docs/hub/en/gguf) format:

2B: https://huggingface.co/bytedance-research/UI-TARS-2B-gguf

7B: https://huggingface.co/bytedance-research/UI-TARS-7B-gguf

Users can convert the model into GGUF format by using the script from [llama.cpp](https://github.com/ggerganov/llama.cpp/blob/master/convert_hf_to_gguf.py):

```bash
python3 convert_hf_to_gguf.py <path to your model>
```

The GGUF file will be generated under the path provided.

#### Deploy GGUF model
We deploy the model by following Ollama [tutorial](https://github.com/ollama/ollama?tab=readme-ov-file#customize-a-model).

```bash
# Create Modelfile, Windows users can just create a file named Modelfile
echo "FROM ./path/to/model.gguf" > Modelfile

# Create model in Ollama
ollama create ui-tars -f Modelfile

# Run the model
ollama run ui-tars

```

Test script is same as vLLM except two changes:

```python
...
client = OpenAI(
    base_url="http://127.0.0.1:11434/v1/",
    ...
)
...
response = client.chat.completions.create(
    model="ui-tars" # the name we create via Ollama cli
    ...
)

``` -->

### Explanation of Inference Results

#### Coordinate Mapping
The model generates a 2D coordinate output that represents relative positions. To convert these values to image-relative coordinates, divide each component by 1000 to obtain values in the range [0,1]. The absolute coordinates required by the Action can be calculated by: 
- X absolute = X relative × image width
- Y absolute = Y relative × image height

For example, given a screen size: 1920 × 1080, and the model generates a coordinate output of (235, 512). The X absolute is `round(1920*235/1000)=451`. The Y absolute is `round(1080*512/1000)=553`. The absolute coordinate is (451, 553)

## Use in desktop and web automation

To experience UI-TARS agent in desktop, you may refer to [UI-TARS-desktop](https://github.com/bytedance/UI-TARS-desktop). We recommend using the **7B/72B DPO model** on desktop.

[Midscene.js](https://github.com/web-infra-dev/Midscene) is an open-source web automation SDK that has supported UI-TARS model. Developers can use javascript and natural language to control the browser. See [this guide](https://midscenejs.com/choose-a-model) for more details about setting up the model.

## License

UI-TARS is licensed under the Apache License 2.0.

## Acknowledgements
This project builds upon and extends the capabilities of Qwen2-VL, a powerful vision-language model, which serves as the foundational architecture for UI-TARS. We would like to acknowledge the contributions of the developers and researchers behind Qwen2-VL for their groundbreaking work in the field of multimodal AI and for providing a robust base for further advancements.

Additionally, we thank the broader open-source community for their datasets, tools, and insights that have facilitated the development of UI-TARS. These collaborative efforts continue to push the boundaries of what GUI automation and AI-driven agents can achieve.

## Citation
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:

```BibTeX
@article{qin2025ui,
  title={UI-TARS: Pioneering Automated GUI Interaction with Native Agents},
  author={Qin, Yujia and Ye, Yining and Fang, Junjie and Wang, Haoming and Liang, Shihao and Tian, Shizuo and Zhang, Junda and Li, Jiahao and Li, Yunxin and Huang, Shijue and others},
  journal={arXiv preprint arXiv:2501.12326},
  year={2025}
}
```