val.py 4.76 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#! /data/cxli/miniconda3/envs/th200/bin/python
import argparse
import os
from glob import glob
import random
import numpy as np

import cv2
import torch
import torch.backends.cudnn as cudnn
import yaml
from albumentations.augmentations import transforms
from albumentations.core.composition import Compose
from sklearn.model_selection import train_test_split
from tqdm import tqdm
from collections import OrderedDict

import archs

from dataset import Dataset
from metrics import iou_score
from utils import AverageMeter
from albumentations import RandomRotate90,Resize
import time

from PIL import Image

def parse_args():
    parser = argparse.ArgumentParser()

    parser.add_argument('--name', default=None, help='model name')
    parser.add_argument('--output_dir', default='outputs', help='ouput dir')
            
    args = parser.parse_args()

    return args

def seed_torch(seed=1029):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True


def main():
    seed_torch()
    args = parse_args()

    with open(f'{args.output_dir}/{args.name}/config.yml', 'r') as f:
        config = yaml.load(f, Loader=yaml.FullLoader)

    print('-'*20)
    for key in config.keys():
        print('%s: %s' % (key, str(config[key])))
    print('-'*20)

    cudnn.benchmark = True

    model = archs.__dict__[config['arch']](config['num_classes'], config['input_channels'], config['deep_supervision'], embed_dims=config['input_list'])

    model = model.cuda()

    dataset_name = config['dataset']
    img_ext = '.png'

    if dataset_name == 'busi':
        mask_ext = '_mask.png'
    elif dataset_name == 'glas':
        mask_ext = '.png'
    elif dataset_name == 'cvc':
        mask_ext = '.png'

    # Data loading code
    img_ids = sorted(glob(os.path.join(config['data_dir'], config['dataset'], 'images', '*' + img_ext)))
    # img_ids.sort()
    img_ids = [os.path.splitext(os.path.basename(p))[0] for p in img_ids]

    _, val_img_ids = train_test_split(img_ids, test_size=0.2, random_state=config['dataseed'])

    ckpt = torch.load(f'{args.output_dir}/{args.name}/model.pth')

    try:        
        model.load_state_dict(ckpt)
    except:
        print("Pretrained model keys:", ckpt.keys())
        print("Current model keys:", model.state_dict().keys())

        pretrained_dict = {k: v for k, v in ckpt.items() if k in model.state_dict()}
        current_dict = model.state_dict()
        diff_keys = set(current_dict.keys()) - set(pretrained_dict.keys())

        print("Difference in model keys:")
        for key in diff_keys:
            print(f"Key: {key}")

        model.load_state_dict(ckpt, strict=False)
        
    model.eval()

    val_transform = Compose([
        Resize(config['input_h'], config['input_w']),
        transforms.Normalize(),
    ])

    val_dataset = Dataset(
        img_ids=val_img_ids,
        img_dir=os.path.join(config['data_dir'], config['dataset'], 'images'),
        mask_dir=os.path.join(config['data_dir'], config['dataset'], 'masks'),
        img_ext=img_ext,
        mask_ext=mask_ext,
        num_classes=config['num_classes'],
        transform=val_transform)
    val_loader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=config['batch_size'],
        shuffle=False,
        num_workers=config['num_workers'],
        drop_last=False)

    iou_avg_meter = AverageMeter()
    dice_avg_meter = AverageMeter()
    hd95_avg_meter = AverageMeter()

    with torch.no_grad():
        for input, target, meta in tqdm(val_loader, total=len(val_loader)):
            input = input.cuda()
            target = target.cuda()
            model = model.cuda()
            # compute output
            output = model(input)

            iou, dice, hd95_ = iou_score(output, target)
            iou_avg_meter.update(iou, input.size(0))
            dice_avg_meter.update(dice, input.size(0))
            hd95_avg_meter.update(hd95_, input.size(0))

            output = torch.sigmoid(output).cpu().numpy()
            output[output>=0.5]=1
            output[output<0.5]=0

            os.makedirs(os.path.join(args.output_dir, config['name'], 'out_val'), exist_ok=True)
            for pred, img_id in zip(output, meta['img_id']):
                pred_np = pred[0].astype(np.uint8)
                pred_np = pred_np * 255
                img = Image.fromarray(pred_np, 'L')
                img.save(os.path.join(args.output_dir, config['name'], 'out_val/{}.jpg'.format(img_id)))

    
    print(config['name'])
    print('IoU: %.4f' % iou_avg_meter.avg)
    print('Dice: %.4f' % dice_avg_meter.avg)
    print('HD95: %.4f' % hd95_avg_meter.avg)



if __name__ == '__main__':
    main()