Scheduler.py 1.28 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
from torch.optim.lr_scheduler import _LRScheduler

class GradualWarmupScheduler(_LRScheduler):
    def __init__(self, optimizer, multiplier, warm_epoch, after_scheduler=None):
        self.multiplier = multiplier
        self.total_epoch = warm_epoch
        self.after_scheduler = after_scheduler
        self.finished = False
        self.last_epoch = None
        self.base_lrs = None
        super().__init__(optimizer)

    def get_lr(self):
        if self.last_epoch > self.total_epoch:
            if self.after_scheduler:
                if not self.finished:
                    self.after_scheduler.base_lrs = [base_lr * self.multiplier for base_lr in self.base_lrs]
                    self.finished = True
                return self.after_scheduler.get_lr()
            return [base_lr * self.multiplier for base_lr in self.base_lrs]
        return [base_lr * ((self.multiplier - 1.) * self.last_epoch / self.total_epoch + 1.) for base_lr in self.base_lrs]


    def step(self, epoch=None, metrics=None):
        if self.finished and self.after_scheduler:
            if epoch is None:
                self.after_scheduler.step(None)
            else:
                self.after_scheduler.step(epoch - self.total_epoch)
        else:
            return super(GradualWarmupScheduler, self).step(epoch)