Train.py 8.61 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

import os
from typing import Dict
import torch
import torch.optim as optim
from tqdm import tqdm
from torch.utils.data import DataLoader
from torchvision import transforms, transforms
# from torchvision.datasets import CIFAR10
from torchvision.utils import save_image
from Diffusion import GaussianDiffusionSampler, GaussianDiffusionTrainer
from Diffusion.UNet import UNet, UNe    t_Baseline
from Diffusion.Model_ConvKan import UNet_ConvKan
from Diffusion.Model_UMLP import UMLP
from Diffusion.Model_UKAN_Hybrid import UKan_Hybrid
from Scheduler import GradualWarmupScheduler
from skimage import io
import os
from torchvision.transforms import ToTensor, Normalize, Compose
from torch.utils.data import Dataset
import sys


model_dict = {
    'UNet': UNet,
    'UNet_ConvKan': UNet_ConvKan, # dose not work
    'UMLP': UMLP,
    'UKan_Hybrid': UKan_Hybrid,
    'UNet_Baseline': UNet_Baseline,
}

class UnlabeledDataset(Dataset):
    def __init__(self, folder, transform=None, repeat_n=1):
        self.folder = folder
        self.transform = transform
        # self.image_files = os.listdir(folder) * repeat_n
        self.image_files = os.listdir(folder) 

    def __len__(self):
        return len(self.image_files)

    def __getitem__(self, idx):
        image_file = self.image_files[idx]
        image_path = os.path.join(self.folder, image_file)
        image = io.imread(image_path)
        if self.transform:
            image = self.transform(image)
        return image, torch.Tensor([0])


def train(modelConfig: Dict):
    device = torch.device(modelConfig["device"])
    log_print = True
    if log_print:
        file = open(modelConfig["save_weight_dir"]+'log.txt', "w")
        sys.stdout = file
    transform = Compose([
        ToTensor(),
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        ])

    if modelConfig["dataset"] == 'cvc':
        dataset = UnlabeledDataset('data/cvc/images_64/', transform=transform, repeat_n=modelConfig["dataset_repeat"])
    elif modelConfig["dataset"] == 'glas':
        dataset = UnlabeledDataset('data/glas/images_64/', transform=transform, repeat_n=modelConfig["dataset_repeat"])
    elif modelConfig["dataset"] == 'glas_resize':
        dataset = UnlabeledDataset('data/glas/images_64_resize/', transform=transform, repeat_n=modelConfig["dataset_repeat"])
    elif modelConfig["dataset"] == 'busi':
        dataset = UnlabeledDataset('data/busi/images_64/', transform=transform, repeat_n=modelConfig["dataset_repeat"])
    else:
        raise ValueError('dataset not found')

    print('modelConfig: ')
    for key, value in modelConfig.items():
        print(key, ' : ', value)
        
    dataloader = DataLoader(
        dataset, batch_size=modelConfig["batch_size"], shuffle=True, num_workers=4, drop_last=True, pin_memory=True)
    
    print('Using {}'.format(modelConfig["model"]))
    # model setup
    net_model =model_dict[modelConfig["model"]](T=modelConfig["T"], ch=modelConfig["channel"], ch_mult=modelConfig["channel_mult"], attn=modelConfig["attn"],
                    num_res_blocks=modelConfig["num_res_blocks"], dropout=modelConfig["dropout"]).to(device)

    if modelConfig["training_load_weight"] is not None:
        net_model.load_state_dict(torch.load(os.path.join(
            modelConfig["save_weight_dir"], modelConfig["training_load_weight"]), map_location=device))
        
    optimizer = torch.optim.AdamW(
        net_model.parameters(), lr=modelConfig["lr"], weight_decay=1e-4)
    cosineScheduler = optim.lr_scheduler.CosineAnnealingLR(
        optimizer=optimizer, T_max=modelConfig["epoch"], eta_min=0, last_epoch=-1)
    warmUpScheduler = GradualWarmupScheduler(
        optimizer=optimizer, multiplier=modelConfig["multiplier"], warm_epoch=modelConfig["epoch"] // 10, after_scheduler=cosineScheduler)

    trainer = GaussianDiffusionTrainer(
        net_model, modelConfig["beta_1"], modelConfig["beta_T"], modelConfig["T"]).to(device)

    # start training
    for e in range(1,modelConfig["epoch"]+1):
        with tqdm(dataloader, dynamic_ncols=True) as tqdmDataLoader:
            for images, labels in tqdmDataLoader:
                # train
                optimizer.zero_grad()
                x_0 = images.to(device)
                
                loss = trainer(x_0).sum() / 1000.
                loss.backward()
                torch.nn.utils.clip_grad_norm_(
                    net_model.parameters(), modelConfig["grad_clip"])
                optimizer.step()
                tqdmDataLoader.set_postfix(ordered_dict={
                    "epoch": e,
                    "loss: ": loss.item(),
                    "img shape: ": x_0.shape,
                    "LR": optimizer.state_dict()['param_groups'][0]["lr"]
                })
                # print version
                if log_print:
                    print("epoch: ", e, "loss: ", loss.item(), "img shape: ", x_0.shape, "LR: ", optimizer.state_dict()['param_groups'][0]["lr"])
        warmUpScheduler.step()
        if e % 50 ==0:
            torch.save(net_model.state_dict(), os.path.join(
                modelConfig["save_weight_dir"], 'ckpt_' + str(e) + "_.pt"))
            modelConfig['test_load_weight'] = 'ckpt_{}_.pt'.format(e)
            eval_tmp(modelConfig, e)

    torch.save(net_model.state_dict(), os.path.join(
        modelConfig["save_weight_dir"], 'ckpt_' + str(e) + "_.pt"))
    if log_print:
        file.close()
        sys.stdout = sys.__stdout__
    
def eval_tmp(modelConfig: Dict, nme: int):
    # load model and evaluate
    with torch.no_grad():
        device = torch.device(modelConfig["device"])
        model = model_dict[modelConfig["model"]](T=modelConfig["T"], ch=modelConfig["channel"], ch_mult=modelConfig["channel_mult"], attn=modelConfig["attn"],
                     num_res_blocks=modelConfig["num_res_blocks"], dropout=0.)
        ckpt = torch.load(os.path.join(
            modelConfig["save_weight_dir"], modelConfig["test_load_weight"]), map_location=device)
    
        model.load_state_dict(ckpt)
        
        print("model load weight done.")
        model.eval()
        sampler = GaussianDiffusionSampler(
            model, modelConfig["beta_1"], modelConfig["beta_T"], modelConfig["T"]).to(device)
        # Sampled from standard normal distribution
        noisyImage = torch.randn(
            size=[modelConfig["batch_size"], 3, modelConfig["img_size"], modelConfig["img_size"]], device=device)
        # saveNoisy = torch.clamp(noisyImage * 0.5 + 0.5, 0, 1)
        # save_image(saveNoisy, os.path.join(
            # modelConfig["sampled_dir"], modelConfig["sampledNoisyImgName"]), nrow=modelConfig["nrow"])
        sampledImgs = sampler(noisyImage)
        sampledImgs = sampledImgs * 0.5 + 0.5  # [0 ~ 1]

        save_root = modelConfig["sampled_dir"].replace('Gens','Tmp')
        os.makedirs(save_root, exist_ok=True)
        save_image(sampledImgs, os.path.join(
            save_root,  modelConfig["sampledImgName"].replace('.png','_{}.png').format(nme)), nrow=modelConfig["nrow"])
        if nme < 0.95 * modelConfig["epoch"]:
            os.remove(os.path.join(
                modelConfig["save_weight_dir"], modelConfig["test_load_weight"]))

def eval(modelConfig: Dict):
    # load model and evaluate
    with torch.no_grad():
        device = torch.device(modelConfig["device"])

        model = model_dict[modelConfig["model"]](T=modelConfig["T"], ch=modelConfig["channel"], ch_mult=modelConfig["channel_mult"], attn=modelConfig["attn"],
                    num_res_blocks=modelConfig["num_res_blocks"], dropout=modelConfig["dropout"]).to(device)
    
        ckpt = torch.load(os.path.join(
            modelConfig["save_weight_dir"], modelConfig["test_load_weight"]), map_location=device)

        model.load_state_dict(ckpt)
        print("model load weight done.")
        model.eval()
        sampler = GaussianDiffusionSampler(
            model, modelConfig["beta_1"], modelConfig["beta_T"], modelConfig["T"]).to(device)
        # Sampled from standard normal distribution
        noisyImage = torch.randn(
            size=[modelConfig["batch_size"], 3, modelConfig["img_size"], modelConfig["img_size"]], device=device)     
        # saveNoisy = torch.clamp(noisyImage * 0.5 + 0.5, 0, 1)
        # save_image(saveNoisy, os.path.join(
        #     modelConfig["sampled_dir"], modelConfig["sampledNoisyImgName"]), nrow=modelConfig["nrow"])
        sampledImgs = sampler(noisyImage)
        sampledImgs = sampledImgs * 0.5 + 0.5  # [0 ~ 1]

        for i, image in enumerate(sampledImgs):
    
            save_image(image, os.path.join(modelConfig["sampled_dir"],  modelConfig["sampledImgName"].replace('.png','_{}.png').format(i)), nrow=modelConfig["nrow"])