Diffusion.py 3.29 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from tqdm import tqdm


def extract(v, t, x_shape):
    """
    Extract some coefficients at specified timesteps, then reshape to
    [batch_size, 1, 1, 1, 1, ...] for broadcasting purposes.
    """
    device = t.device
    out = torch.gather(v, index=t, dim=0).float().to(device)
    return out.view([t.shape[0]] + [1] * (len(x_shape) - 1))


class GaussianDiffusionTrainer(nn.Module):
    def __init__(self, model, beta_1, beta_T, T):
        super().__init__()

        self.model = model
        self.T = T

        self.register_buffer(
            'betas', torch.linspace(beta_1, beta_T, T).double())
        alphas = 1. - self.betas
        alphas_bar = torch.cumprod(alphas, dim=0)

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer(
            'sqrt_alphas_bar', torch.sqrt(alphas_bar))
        self.register_buffer(
            'sqrt_one_minus_alphas_bar', torch.sqrt(1. - alphas_bar))

    def forward(self, x_0):
        """
        Algorithm 1.
        """
        t = torch.randint(self.T, size=(x_0.shape[0], ), device=x_0.device)
        noise = torch.randn_like(x_0)
        x_t = (
            extract(self.sqrt_alphas_bar, t, x_0.shape) * x_0 +
            extract(self.sqrt_one_minus_alphas_bar, t, x_0.shape) * noise)
        loss = F.mse_loss(self.model(x_t, t), noise, reduction='none')
        return loss


class GaussianDiffusionSampler(nn.Module):
    def __init__(self, model, beta_1, beta_T, T):
        super().__init__()

        self.model = model
        self.T = T

        self.register_buffer('betas', torch.linspace(beta_1, beta_T, T).double())
        alphas = 1. - self.betas
        alphas_bar = torch.cumprod(alphas, dim=0)
        alphas_bar_prev = F.pad(alphas_bar, [1, 0], value=1)[:T]

        self.register_buffer('coeff1', torch.sqrt(1. / alphas))
        self.register_buffer('coeff2', self.coeff1 * (1. - alphas) / torch.sqrt(1. - alphas_bar))

        self.register_buffer('posterior_var', self.betas * (1. - alphas_bar_prev) / (1. - alphas_bar))

    def predict_xt_prev_mean_from_eps(self, x_t, t, eps):
        assert x_t.shape == eps.shape
        return (
            extract(self.coeff1, t, x_t.shape) * x_t -
            extract(self.coeff2, t, x_t.shape) * eps
        )

    def p_mean_variance(self, x_t, t):
        # below: only log_variance is used in the KL computations
        var = torch.cat([self.posterior_var[1:2], self.betas[1:]])
        var = extract(var, t, x_t.shape)

        eps = self.model(x_t, t)
        xt_prev_mean = self.predict_xt_prev_mean_from_eps(x_t, t, eps=eps)

        return xt_prev_mean, var

    def forward(self, x_T):
        """
        Algorithm 2.
        """
        x_t = x_T
        print('Start Sampling')
        for time_step in tqdm(reversed(range(self.T))):
            t = x_t.new_ones([x_T.shape[0], ], dtype=torch.long) * time_step
            mean, var= self.p_mean_variance(x_t=x_t, t=t)
            # no noise when t == 0
            if time_step > 0:
                noise = torch.randn_like(x_t)
            else:
                noise = 0
            x_t = mean + torch.sqrt(var) * noise
            assert torch.isnan(x_t).int().sum() == 0, "nan in tensor."
        x_0 = x_t
        return torch.clip(x_0, -1, 1)