README.md 1.43 KB
Newer Older
zhanggzh's avatar
zhanggzh committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# TVM 
## 模型介绍
```
    使用深度学习编译器TVM对ResNet50网络模型进行推理、调优及部署
```
## 模型结构
```
    ResNet50-v2
```
## 数据集及模型文件
模型文件下载地址: 
```
    "https://github.com/onnx/models/raw/main/vision/classification/resnet/model/resnet50-v2-7.onnx"
```
    

## 推理、自动调优及部署
### 环境配置
拉取镜像:
```
zhanggzh's avatar
zhanggzh committed
21
    docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:tvm-0.11_fp32_cpp_dtk22.10_py38_centos-7.6-latest
zhanggzh's avatar
zhanggzh committed
22
23
24
25
26
27
28
29
30
31
```

### 执行推理及调优
下载模型文件后执行以下命令进行推理测试及调优测试:
```
    python tune_resnet50-v2.py
```
    
    
### 部署推理
zhanggzh's avatar
zhanggzh committed
32
33
下载配置好镜像之后,cd /tvm-0.11-dev0/apps/ 进入该路径下,执行git clone https://developer.hpccube.com/codes/modelzoo/tvm_tune_resnet50-v2.git 下载代码,
cd tvm_tune_resnet50-v2/ 进入该路径后,执行以下命令:
zhanggzh's avatar
zhanggzh committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
```
    mkdir -p lib
    python prepare_test_libs.py
    sh run_example.sh
```
## 准确率数据
```
    max_num:15.6692
    max_iter:0x28cda14
    max_num_index:345
```
## TVM版本
```
    TVM-0.11
```   
    

## 源码仓库及问题反馈
   * https://developer.hpccube.com/codes/modelzoo/tvm_tune_resnet50-v2
zhanggzh's avatar
zhanggzh committed
53

zhanggzh's avatar
zhanggzh committed
54
55
56
## 参考
   * [https://tvm.apache.org/docs/how_to/tune_with_autoscheduler/tune_network_cuda.html#sphx-glr-how-to-tune-with-autoscheduler-tune-network-cuda-py]()