clip_feature_extraction.py 7.41 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
import warnings
from datetime import datetime

import mmcv
import numpy as np
import torch
import torch.distributed as dist
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.fileio.io import file_handlers
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import get_dist_info, init_dist, load_checkpoint
from mmcv.runner.fp16_utils import wrap_fp16_model

from mmaction.apis import multi_gpu_test, single_gpu_test
from mmaction.datasets import build_dataloader, build_dataset
from mmaction.models import build_model
from mmaction.utils import register_module_hooks


def parse_args():
    parser = argparse.ArgumentParser(
        description='MMAction2 clip-level feature extraction')
    parser.add_argument('config', help='test config file path')
    parser.add_argument('checkpoint', help='checkpoint file')
    parser.add_argument('--video-list', help='video file list')
    parser.add_argument('--video-root', help='video root directory')
    parser.add_argument(
        '--out',
        default=None,
        help='output result file in pkl/yaml/json format')
    parser.add_argument(
        '--fuse-conv-bn',
        action='store_true',
        help='Whether to fuse conv and bn, this will slightly increase'
        'the inference speed')
    parser.add_argument(
        '--gpu-collect',
        action='store_true',
        help='whether to use gpu to collect results')
    parser.add_argument(
        '--tmpdir',
        help='tmp directory used for collecting results from multiple '
        'workers, available when gpu-collect is not specified')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        default={},
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. For example, '
        "'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'")
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)

    return args


def turn_off_pretrained(cfg):
    # recursively find all pretrained in the model config,
    # and set them None to avoid redundant pretrain steps for testing
    if 'pretrained' in cfg:
        cfg.pretrained = None

    # recursively turn off pretrained value
    for sub_cfg in cfg.values():
        if isinstance(sub_cfg, dict):
            turn_off_pretrained(sub_cfg)


def text2tensor(text, size=256):
    nums = [ord(x) for x in text]
    assert len(nums) < size
    nums.extend([0] * (size - len(nums)))
    nums = np.array(nums, dtype=np.uint8)
    return torch.from_numpy(nums)


def tensor2text(tensor):
    # 0 may not occur in a string
    chars = [chr(x) for x in tensor if x != 0]
    return ''.join(chars)


def inference_pytorch(args, cfg, distributed, data_loader):
    """Get predictions by pytorch models."""
    # remove redundant pretrain steps for testing
    turn_off_pretrained(cfg.model)

    # build the model and load checkpoint
    model = build_model(
        cfg.model, train_cfg=None, test_cfg=cfg.get('test_cfg'))

    if len(cfg.module_hooks) > 0:
        register_module_hooks(model, cfg.module_hooks)

    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, args.checkpoint, map_location='cpu')

    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    return outputs


def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)

    cfg.merge_from_dict(args.cfg_options)

    if cfg.model['test_cfg'] is None:
        cfg.model['test_cfg'] = dict(feature_extraction=True)
    else:
        cfg.model['test_cfg']['feature_extraction'] = True

    # Load output_config from cfg
    output_config = cfg.get('output_config', {})
    if args.out:
        # Overwrite output_config from args.out
        output_config = Config._merge_a_into_b(
            dict(out=args.out), output_config)

    assert output_config, 'Please specify output filename with --out.'

    dataset_type = cfg.data.test.type
    if output_config.get('out', None):
        if 'output_format' in output_config:
            # ugly workround to make recognition and localization the same
            warnings.warn(
                'Skip checking `output_format` in localization task.')
        else:
            out = output_config['out']
            # make sure the dirname of the output path exists
            mmcv.mkdir_or_exist(osp.dirname(out))
            _, suffix = osp.splitext(out)
            assert dataset_type == 'VideoDataset'

            assert suffix[1:] in file_handlers, (
                'The format of the output '
                'file should be json, pickle or yaml')

    # set cudnn benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.data.test.test_mode = True
    cfg.data.test.data_prefix = args.video_root

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    rank, _ = get_dist_info()

    size = 256
    fname_tensor = torch.zeros(size, dtype=torch.uint8).cuda()
    if rank == 0:
        videos = open(args.video_list).readlines()
        videos = [x.strip() for x in videos]

        timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
        fake_anno = f'fake_anno_{timestamp}.txt'
        with open(fake_anno, 'w') as fout:
            lines = [x + ' 0' for x in videos]
            fout.write('\n'.join(lines))
        fname_tensor = text2tensor(fake_anno, size).cuda()

    if distributed:
        dist.broadcast(fname_tensor.cuda(), src=0)

    fname = tensor2text(fname_tensor)
    cfg.data.test.ann_file = fname

    # The flag is used to register module's hooks
    cfg.setdefault('module_hooks', [])

    # build the dataloader
    dataset = build_dataset(cfg.data.test, dict(test_mode=True))
    dataloader_setting = dict(
        videos_per_gpu=cfg.data.get('videos_per_gpu', 1),
        workers_per_gpu=cfg.data.get('workers_per_gpu', 1),
        dist=distributed,
        shuffle=False)

    dataloader_setting = dict(dataloader_setting,
                              **cfg.data.get('test_dataloader', {}))
    data_loader = build_dataloader(dataset, **dataloader_setting)

    outputs = inference_pytorch(args, cfg, distributed, data_loader)

    if rank == 0:
        if output_config.get('out', None):
            out = output_config['out']
            print(f'\nwriting results to {out}')
            dataset.dump_results(outputs, **output_config)
        # remove the temporary file
        os.remove(fake_anno)


if __name__ == '__main__':
    main()