ntu_pose_extraction.py 11.3 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# Copyright (c) OpenMMLab. All rights reserved.
import abc
import argparse
import os
import os.path as osp
import random as rd
import shutil
import string
from collections import defaultdict

import cv2
import mmcv
import numpy as np

try:
    from mmdet.apis import inference_detector, init_detector
except (ImportError, ModuleNotFoundError):
    raise ImportError('Failed to import `inference_detector` and '
                      '`init_detector` form `mmdet.apis`. These apis are '
                      'required in this script! ')

try:
    from mmpose.apis import inference_top_down_pose_model, init_pose_model
except (ImportError, ModuleNotFoundError):
    raise ImportError('Failed to import `inference_top_down_pose_model` and '
                      '`init_pose_model` form `mmpose.apis`. These apis are '
                      'required in this script! ')

mmdet_root = ''
mmpose_root = ''

args = abc.abstractproperty()
args.det_config = f'{mmdet_root}/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py'  # noqa: E501
args.det_checkpoint = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco-person/faster_rcnn_r50_fpn_1x_coco-person_20201216_175929-d022e227.pth'  # noqa: E501
args.det_score_thr = 0.5
args.pose_config = f'{mmpose_root}/configs/body/2d_kpt_sview_rgb_img/topdown_heatmap/coco/hrnet_w32_coco_256x192.py'  # noqa: E501
args.pose_checkpoint = 'https://download.openmmlab.com/mmpose/top_down/hrnet/hrnet_w32_coco_256x192-c78dce93_20200708.pth'  # noqa: E501


def gen_id(size=8):
    chars = string.ascii_uppercase + string.digits
    return ''.join(rd.choice(chars) for _ in range(size))


def extract_frame(video_path):
    dname = gen_id()
    os.makedirs(dname, exist_ok=True)
    frame_tmpl = osp.join(dname, 'img_{:05d}.jpg')
    vid = cv2.VideoCapture(video_path)
    frame_paths = []
    flag, frame = vid.read()
    cnt = 0
    while flag:
        frame_path = frame_tmpl.format(cnt + 1)
        frame_paths.append(frame_path)

        cv2.imwrite(frame_path, frame)
        cnt += 1
        flag, frame = vid.read()

    return frame_paths


def detection_inference(args, frame_paths):
    model = init_detector(args.det_config, args.det_checkpoint, args.device)
    assert model.CLASSES[0] == 'person', ('We require you to use a detector '
                                          'trained on COCO')
    results = []
    print('Performing Human Detection for each frame')
    prog_bar = mmcv.ProgressBar(len(frame_paths))
    for frame_path in frame_paths:
        result = inference_detector(model, frame_path)
        # We only keep human detections with score larger than det_score_thr
        result = result[0][result[0][:, 4] >= args.det_score_thr]
        results.append(result)
        prog_bar.update()
    return results


def intersection(b0, b1):
    l, r = max(b0[0], b1[0]), min(b0[2], b1[2])
    u, d = max(b0[1], b1[1]), min(b0[3], b1[3])
    return max(0, r - l) * max(0, d - u)


def iou(b0, b1):
    i = intersection(b0, b1)
    u = area(b0) + area(b1) - i
    return i / u


def area(b):
    return (b[2] - b[0]) * (b[3] - b[1])


def removedup(bbox):

    def inside(box0, box1, thre=0.8):
        return intersection(box0, box1) / area(box0) > thre

    num_bboxes = bbox.shape[0]
    if num_bboxes == 1 or num_bboxes == 0:
        return bbox
    valid = []
    for i in range(num_bboxes):
        flag = True
        for j in range(num_bboxes):
            if i != j and inside(bbox[i],
                                 bbox[j]) and bbox[i][4] <= bbox[j][4]:
                flag = False
                break
        if flag:
            valid.append(i)
    return bbox[valid]


def is_easy_example(det_results, num_person):
    threshold = 0.95

    def thre_bbox(bboxes, thre=threshold):
        shape = [sum(bbox[:, -1] > thre) for bbox in bboxes]
        ret = np.all(np.array(shape) == shape[0])
        return shape[0] if ret else -1

    if thre_bbox(det_results) == num_person:
        det_results = [x[x[..., -1] > 0.95] for x in det_results]
        return True, np.stack(det_results)
    return False, thre_bbox(det_results)


def bbox2tracklet(bbox):
    iou_thre = 0.6
    tracklet_id = -1
    tracklet_st_frame = {}
    tracklets = defaultdict(list)
    for t, box in enumerate(bbox):
        for idx in range(box.shape[0]):
            matched = False
            for tlet_id in range(tracklet_id, -1, -1):
                cond1 = iou(tracklets[tlet_id][-1][-1], box[idx]) >= iou_thre
                cond2 = (
                    t - tracklet_st_frame[tlet_id] - len(tracklets[tlet_id]) <
                    10)
                cond3 = tracklets[tlet_id][-1][0] != t
                if cond1 and cond2 and cond3:
                    matched = True
                    tracklets[tlet_id].append((t, box[idx]))
                    break
            if not matched:
                tracklet_id += 1
                tracklet_st_frame[tracklet_id] = t
                tracklets[tracklet_id].append((t, box[idx]))
    return tracklets


def drop_tracklet(tracklet):
    tracklet = {k: v for k, v in tracklet.items() if len(v) > 5}

    def meanarea(track):
        boxes = np.stack([x[1] for x in track]).astype(np.float32)
        areas = (boxes[..., 2] - boxes[..., 0]) * (
            boxes[..., 3] - boxes[..., 1])
        return np.mean(areas)

    tracklet = {k: v for k, v in tracklet.items() if meanarea(v) > 5000}
    return tracklet


def distance_tracklet(tracklet):
    dists = {}
    for k, v in tracklet.items():
        bboxes = np.stack([x[1] for x in v])
        c_x = (bboxes[..., 2] + bboxes[..., 0]) / 2.
        c_y = (bboxes[..., 3] + bboxes[..., 1]) / 2.
        c_x -= 480
        c_y -= 270
        c = np.concatenate([c_x[..., None], c_y[..., None]], axis=1)
        dist = np.linalg.norm(c, axis=1)
        dists[k] = np.mean(dist)
    return dists


def tracklet2bbox(track, num_frame):
    # assign_prev
    bbox = np.zeros((num_frame, 5))
    trackd = {}
    for k, v in track:
        bbox[k] = v
        trackd[k] = v
    for i in range(num_frame):
        if bbox[i][-1] <= 0.5:
            mind = np.Inf
            for k in trackd:
                if np.abs(k - i) < mind:
                    mind = np.abs(k - i)
            bbox[i] = bbox[k]
    return bbox


def tracklets2bbox(tracklet, num_frame):
    dists = distance_tracklet(tracklet)
    sorted_inds = sorted(dists, key=lambda x: dists[x])
    dist_thre = np.Inf
    for i in sorted_inds:
        if len(tracklet[i]) >= num_frame / 2:
            dist_thre = 2 * dists[i]
            break

    dist_thre = max(50, dist_thre)

    bbox = np.zeros((num_frame, 5))
    bboxd = {}
    for idx in sorted_inds:
        if dists[idx] < dist_thre:
            for k, v in tracklet[idx]:
                if bbox[k][-1] < 0.01:
                    bbox[k] = v
                    bboxd[k] = v
    bad = 0
    for idx in range(num_frame):
        if bbox[idx][-1] < 0.01:
            bad += 1
            mind = np.Inf
            mink = None
            for k in bboxd:
                if np.abs(k - idx) < mind:
                    mind = np.abs(k - idx)
                    mink = k
            bbox[idx] = bboxd[mink]
    return bad, bbox


def bboxes2bbox(bbox, num_frame):
    ret = np.zeros((num_frame, 2, 5))
    for t, item in enumerate(bbox):
        if item.shape[0] <= 2:
            ret[t, :item.shape[0]] = item
        else:
            inds = sorted(
                list(range(item.shape[0])), key=lambda x: -item[x, -1])
            ret[t] = item[inds[:2]]
    for t in range(num_frame):
        if ret[t, 0, -1] <= 0.01:
            ret[t] = ret[t - 1]
        elif ret[t, 1, -1] <= 0.01:
            if t:
                if ret[t - 1, 0, -1] > 0.01 and ret[t - 1, 1, -1] > 0.01:
                    if iou(ret[t, 0], ret[t - 1, 0]) > iou(
                            ret[t, 0], ret[t - 1, 1]):
                        ret[t, 1] = ret[t - 1, 1]
                    else:
                        ret[t, 1] = ret[t - 1, 0]
    return ret


def ntu_det_postproc(vid, det_results):
    det_results = [removedup(x) for x in det_results]
    label = int(vid.split('/')[-1].split('A')[1][:3])
    mpaction = list(range(50, 61)) + list(range(106, 121))
    n_person = 2 if label in mpaction else 1
    is_easy, bboxes = is_easy_example(det_results, n_person)
    if is_easy:
        print('\nEasy Example')
        return bboxes

    tracklets = bbox2tracklet(det_results)
    tracklets = drop_tracklet(tracklets)

    print(f'\nHard {n_person}-person Example, found {len(tracklets)} tracklet')
    if n_person == 1:
        if len(tracklets) == 1:
            tracklet = list(tracklets.values())[0]
            det_results = tracklet2bbox(tracklet, len(det_results))
            return np.stack(det_results)
        else:
            bad, det_results = tracklets2bbox(tracklets, len(det_results))
            return det_results
    # n_person is 2
    if len(tracklets) <= 2:
        tracklets = list(tracklets.values())
        bboxes = []
        for tracklet in tracklets:
            bboxes.append(tracklet2bbox(tracklet, len(det_results))[:, None])
        bbox = np.concatenate(bboxes, axis=1)
        return bbox
    else:
        return bboxes2bbox(det_results, len(det_results))


def pose_inference(args, frame_paths, det_results):
    model = init_pose_model(args.pose_config, args.pose_checkpoint,
                            args.device)
    print('Performing Human Pose Estimation for each frame')
    prog_bar = mmcv.ProgressBar(len(frame_paths))

    num_frame = len(det_results)
    num_person = max([len(x) for x in det_results])
    kp = np.zeros((num_person, num_frame, 17, 3), dtype=np.float32)

    for i, (f, d) in enumerate(zip(frame_paths, det_results)):
        # Align input format
        d = [dict(bbox=x) for x in list(d) if x[-1] > 0.5]
        pose = inference_top_down_pose_model(model, f, d, format='xyxy')[0]
        for j, item in enumerate(pose):
            kp[j, i] = item['keypoints']
        prog_bar.update()
    return kp


def ntu_pose_extraction(vid, skip_postproc=False):
    frame_paths = extract_frame(vid)
    det_results = detection_inference(args, frame_paths)
    if not skip_postproc:
        det_results = ntu_det_postproc(vid, det_results)
    pose_results = pose_inference(args, frame_paths, det_results)
    anno = dict()
    anno['keypoint'] = pose_results[..., :2]
    anno['keypoint_score'] = pose_results[..., 2]
    anno['frame_dir'] = osp.splitext(osp.basename(vid))[0]
    anno['img_shape'] = (1080, 1920)
    anno['original_shape'] = (1080, 1920)
    anno['total_frames'] = pose_results.shape[1]
    anno['label'] = int(osp.basename(vid).split('A')[1][:3]) - 1
    shutil.rmtree(osp.dirname(frame_paths[0]))

    return anno


def parse_args():
    parser = argparse.ArgumentParser(
        description='Generate Pose Annotation for a single NTURGB-D video')
    parser.add_argument('video', type=str, help='source video')
    parser.add_argument('output', type=str, help='output pickle name')
    parser.add_argument('--device', type=str, default='cuda:0')
    parser.add_argument('--skip-postproc', action='store_true')
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    global_args = parse_args()
    args.device = global_args.device
    args.video = global_args.video
    args.output = global_args.output
    args.skip_postproc = global_args.skip_postproc
    anno = ntu_pose_extraction(args.video, args.skip_postproc)
    mmcv.dump(anno, args.output)