README.md 7.05 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Preparing ActivityNet

## Introduction

<!-- [DATASET] -->

```BibTeX
@article{Heilbron2015ActivityNetAL,
  title={ActivityNet: A large-scale video benchmark for human activity understanding},
  author={Fabian Caba Heilbron and Victor Escorcia and Bernard Ghanem and Juan Carlos Niebles},
  journal={2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2015},
  pages={961-970}
}
```

For basic dataset information, please refer to the official [website](http://activity-net.org/).
For action detection, you can either use the ActivityNet rescaled feature provided in this [repo](https://github.com/wzmsltw/BSN-boundary-sensitive-network#code-and-data-preparation) or extract feature with mmaction2 (which has better performance).
We release both pipeline.
Before we start, please make sure that current working directory is `$MMACTION2/tools/data/activitynet/`.

## Option 1: Use the ActivityNet rescaled feature provided in this [repo](https://github.com/wzmsltw/BSN-boundary-sensitive-network#code-and-data-preparation)

### Step 1. Download Annotations

First of all, you can run the following script to download annotation files.

```shell
bash download_feature_annotations.sh
```

### Step 2. Prepare Videos Features

Then, you can run the following script to download activitynet features.

```shell
bash download_features.sh
```

### Step 3. Process Annotation Files

Next, you can run the following script to process the downloaded annotation files for training and testing.
It first merges the two annotation files together and then separates the annoations by `train`, `val` and `test`.

```shell
python process_annotations.py
```

## Option 2: Extract ActivityNet feature using MMAction2 with all videos provided in official [website](http://activity-net.org/)

### Step 1. Download Annotations

First of all, you can run the following script to download annotation files.

```shell
bash download_annotations.sh
```

### Step 2. Prepare Videos

Then, you can run the following script to prepare videos.
The codes are adapted from the [official crawler](https://github.com/activitynet/ActivityNet/tree/master/Crawler/Kinetics). Note that this might take a long time.

```shell
bash download_videos.sh
```

Since some videos in the ActivityNet dataset might be no longer available on YouTube, official [website](http://activity-net.org/) has made the full dataset available on Google and Baidu drives.
To accommodate missing data requests, you can fill in this [request form](https://docs.google.com/forms/d/e/1FAIpQLSeKaFq9ZfcmZ7W0B0PbEhfbTHY41GeEgwsa7WobJgGUhn4DTQ/viewform) provided in official [download page](http://activity-net.org/download.html) to have a 7-day-access to download the videos from the drive folders.

We also provide download steps for annotations from [BSN repo](https://github.com/wzmsltw/BSN-boundary-sensitive-network#code-and-data-preparation)

```shell
bash download_bsn_videos.sh
```

For this case, the downloading scripts update the annotation file after downloading to make sure every video in it exists.

### Step 3. Extract RGB and Flow

Before extracting, please refer to [install.md](/docs/en/install.md) for installing [denseflow](https://github.com/open-mmlab/denseflow).

Use following scripts to extract both RGB and Flow.

```shell
bash extract_frames.sh
```

The command above can generate images with new short edge 256. If you want to generate images with short edge 320 (320p), or with fix size 340x256, you can change the args `--new-short 256` to `--new-short 320` or `--new-width 340 --new-height 256`.
More details can be found in \[data_preparation\](/docs/en/data_preparation.md)

### Step 4. Generate File List for ActivityNet Finetuning

With extracted frames, you can generate video-level or clip-level lists of rawframes, which can be used for ActivityNet Finetuning.

```shell
python generate_rawframes_filelist.py
```

### Step 5. Finetune TSN models on ActivityNet

You can use ActivityNet configs in `configs/recognition/tsn` to finetune TSN models on ActivityNet.
You need to use Kinetics models for pretraining.
Both RGB models and Flow models are supported.

### Step 6. Extract ActivityNet Feature with finetuned ckpts

After finetuning TSN on ActivityNet, you can use it to extract both RGB and Flow feature.

```shell
python tsn_feature_extraction.py --data-prefix ../../../data/ActivityNet/rawframes --data-list ../../../data/ActivityNet/anet_train_video.txt --output-prefix ../../../data/ActivityNet/rgb_feat --modality RGB --ckpt /path/to/rgb_checkpoint.pth

python tsn_feature_extraction.py --data-prefix ../../../data/ActivityNet/rawframes --data-list ../../../data/ActivityNet/anet_val_video.txt --output-prefix ../../../data/ActivityNet/rgb_feat --modality RGB --ckpt /path/to/rgb_checkpoint.pth

python tsn_feature_extraction.py --data-prefix ../../../data/ActivityNet/rawframes --data-list ../../../data/ActivityNet/anet_train_video.txt --output-prefix ../../../data/ActivityNet/flow_feat --modality Flow --ckpt /path/to/flow_checkpoint.pth

python tsn_feature_extraction.py --data-prefix ../../../data/ActivityNet/rawframes --data-list ../../../data/ActivityNet/anet_val_video.txt --output-prefix ../../../data/ActivityNet/flow_feat --modality Flow --ckpt /path/to/flow_checkpoint.pth
```

After feature extraction, you can use our post processing scripts to concat RGB and Flow feature, generate the `100-t X 400-d` feature for Action Detection.

```shell
python activitynet_feature_postprocessing.py --rgb ../../../data/ActivityNet/rgb_feat --flow ../../../data/ActivityNet/flow_feat --dest ../../../data/ActivityNet/mmaction_feat
```

## Final Step. Check Directory Structure

After the whole data pipeline for ActivityNet preparation,
you will get the features, videos, frames and annotation files.

In the context of the whole project (for ActivityNet only), the folder structure will look like:

```
mmaction2
├── mmaction
├── tools
├── configs
├── data
│   ├── ActivityNet

(if Option 1 used)
│   │   ├── anet_anno_{train,val,test,full}.json
│   │   ├── anet_anno_action.json
│   │   ├── video_info_new.csv
│   │   ├── activitynet_feature_cuhk
│   │   │   ├── csv_mean_100
│   │   │   │   ├── v___c8enCfzqw.csv
│   │   │   │   ├── v___dXUJsj3yo.csv
│   │   │   |   ├── ..

(if Option 2 used)
│   │   ├── anet_train_video.txt
│   │   ├── anet_val_video.txt
│   │   ├── anet_train_clip.txt
│   │   ├── anet_val_clip.txt
│   │   ├── activity_net.v1-3.min.json
│   │   ├── mmaction_feat
│   │   │   ├── v___c8enCfzqw.csv
│   │   │   ├── v___dXUJsj3yo.csv
│   │   │   ├── ..
│   │   ├── rawframes
│   │   │   ├── v___c8enCfzqw
│   │   │   │   ├── img_00000.jpg
│   │   │   │   ├── flow_x_00000.jpg
│   │   │   │   ├── flow_y_00000.jpg
│   │   │   │   ├── ..
│   │   │   ├── ..

```

For training and evaluating on ActivityNet, please refer to [getting_started.md](/docs/en/getting_started.md).