get_flops.py 1.98 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
# Copyright (c) OpenMMLab. All rights reserved.
import argparse

from mmcv import Config

from mmaction.models import build_recognizer

try:
    from mmcv.cnn import get_model_complexity_info
except ImportError:
    raise ImportError('Please upgrade mmcv to >0.6.2')


def parse_args():
    parser = argparse.ArgumentParser(description='Get model flops and params')
    parser.add_argument('config', help='config file path')
    parser.add_argument(
        '--shape',
        type=int,
        nargs='+',
        default=[340, 256],
        help='input image size')
    args = parser.parse_args()
    return args


def main():

    args = parse_args()

    if len(args.shape) == 1:
        input_shape = (1, 3, args.shape[0], args.shape[0])
    elif len(args.shape) == 2:
        input_shape = (
            1,
            3,
        ) + tuple(args.shape)
    elif len(args.shape) == 4:
        # n, c, h, w = args.shape
        input_shape = tuple(args.shape)
    elif len(args.shape) == 5:
        # n, c, t, h, w = args.shape
        input_shape = tuple(args.shape)
    else:
        raise ValueError('invalid input shape')

    cfg = Config.fromfile(args.config)
    model = build_recognizer(
        cfg.model,
        train_cfg=cfg.get('train_cfg'),
        test_cfg=cfg.get('test_cfg'))

    model = model.cuda()
    model.eval()

    if hasattr(model, 'forward_dummy'):
        model.forward = model.forward_dummy
    else:
        raise NotImplementedError(
            'FLOPs counter is currently not currently supported with {}'.
            format(model.__class__.__name__))

    flops, params = get_model_complexity_info(model, input_shape)
    split_line = '=' * 30
    print(f'{split_line}\nInput shape: {input_shape}\n'
          f'Flops: {flops}\nParams: {params}\n{split_line}')
    print('!!!Please be cautious if you use the results in papers. '
          'You may need to check if all ops are supported and verify that the '
          'flops computation is correct.')


if __name__ == '__main__':
    main()