test_module_hooks.py 5.01 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp

import mmcv
import numpy as np
import pytest
import torch

from mmaction.models import build_recognizer
from mmaction.utils import register_module_hooks
from mmaction.utils.module_hooks import GPUNormalize
from mmaction.utils.multigrid import LongShortCycleHook


def test_register_module_hooks():
    _module_hooks = [
        dict(
            type='GPUNormalize',
            hooked_module='backbone',
            hook_pos='forward_pre',
            input_format='NCHW',
            mean=[123.675, 116.28, 103.53],
            std=[58.395, 57.12, 57.375])
    ]

    repo_dpath = osp.dirname(osp.dirname(osp.dirname(__file__)))
    config_fpath = osp.join(repo_dpath, 'configs/_base_/models/tsm_r50.py')
    config = mmcv.Config.fromfile(config_fpath)
    config.model['backbone']['pretrained'] = None

    # case 1
    module_hooks = copy.deepcopy(_module_hooks)
    module_hooks[0]['hook_pos'] = 'forward_pre'
    recognizer = build_recognizer(config.model)
    handles = register_module_hooks(recognizer, module_hooks)
    assert recognizer.backbone._forward_pre_hooks[
        handles[0].id].__name__ == 'normalize_hook'

    # case 2
    module_hooks = copy.deepcopy(_module_hooks)
    module_hooks[0]['hook_pos'] = 'forward'
    recognizer = build_recognizer(config.model)
    handles = register_module_hooks(recognizer, module_hooks)
    assert recognizer.backbone._forward_hooks[
        handles[0].id].__name__ == 'normalize_hook'

    # case 3
    module_hooks = copy.deepcopy(_module_hooks)
    module_hooks[0]['hooked_module'] = 'cls_head'
    module_hooks[0]['hook_pos'] = 'backward'
    recognizer = build_recognizer(config.model)
    handles = register_module_hooks(recognizer, module_hooks)
    assert recognizer.cls_head._backward_hooks[
        handles[0].id].__name__ == 'normalize_hook'

    # case 4
    module_hooks = copy.deepcopy(_module_hooks)
    module_hooks[0]['hook_pos'] = '_other_pos'
    recognizer = build_recognizer(config.model)
    with pytest.raises(ValueError):
        handles = register_module_hooks(recognizer, module_hooks)

    # case 5
    module_hooks = copy.deepcopy(_module_hooks)
    module_hooks[0]['hooked_module'] = '_other_module'
    recognizer = build_recognizer(config.model)
    with pytest.raises(ValueError):
        handles = register_module_hooks(recognizer, module_hooks)


def test_gpu_normalize():

    def check_normalize(origin_imgs, result_imgs, norm_cfg):
        """Check if the origin_imgs are normalized correctly into result_imgs
        in a given norm_cfg."""
        from numpy.testing import assert_array_almost_equal
        target_imgs = result_imgs.copy()
        target_imgs *= norm_cfg['std']
        target_imgs += norm_cfg['mean']
        assert_array_almost_equal(origin_imgs, target_imgs, decimal=4)

    _gpu_normalize_cfg = dict(
        input_format='NCTHW',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375])

    # case 1
    gpu_normalize_cfg = copy.deepcopy(_gpu_normalize_cfg)
    gpu_normalize_cfg['input_format'] = 'NCHW'
    gpu_normalize = GPUNormalize(**gpu_normalize_cfg)
    assert gpu_normalize._mean.shape == (1, 3, 1, 1)
    imgs = np.random.randint(256, size=(2, 240, 320, 3), dtype=np.uint8)
    _input = (torch.tensor(imgs).permute(0, 3, 1, 2), )
    normalize_hook = gpu_normalize.hook_func()
    _input = normalize_hook(torch.nn.Module, _input)
    result_imgs = np.array(_input[0].permute(0, 2, 3, 1))
    check_normalize(imgs, result_imgs, gpu_normalize_cfg)

    # case 2
    gpu_normalize_cfg = copy.deepcopy(_gpu_normalize_cfg)
    gpu_normalize_cfg['input_format'] = 'NCTHW'
    gpu_normalize = GPUNormalize(**gpu_normalize_cfg)
    assert gpu_normalize._mean.shape == (1, 3, 1, 1, 1)

    # case 3
    gpu_normalize_cfg = copy.deepcopy(_gpu_normalize_cfg)
    gpu_normalize_cfg['input_format'] = 'NCHW_Flow'
    gpu_normalize = GPUNormalize(**gpu_normalize_cfg)
    assert gpu_normalize._mean.shape == (1, 3, 1, 1)

    # case 4
    gpu_normalize_cfg = copy.deepcopy(_gpu_normalize_cfg)
    gpu_normalize_cfg['input_format'] = 'NPTCHW'
    gpu_normalize = GPUNormalize(**gpu_normalize_cfg)
    assert gpu_normalize._mean.shape == (1, 1, 1, 3, 1, 1)

    # case 5
    gpu_normalize_cfg = copy.deepcopy(_gpu_normalize_cfg)
    gpu_normalize_cfg['input_format'] = '_format'
    with pytest.raises(ValueError):
        gpu_normalize = GPUNormalize(**gpu_normalize_cfg)


def test_multigrid_hook():
    multigrid_cfg = dict(data=dict(
        videos_per_gpu=8,
        workers_per_gpu=4,
    ))
    with pytest.raises(AssertionError):
        LongShortCycleHook(multigrid_cfg)

    multigrid_cfg = dict(
        multigrid=dict(
            long_cycle=True,
            short_cycle=True,
            epoch_factor=1.5,
            long_cycle_factors=[[0.25, 0.7071], [0.5, 0.7071], [0.5, 1],
                                [1, 1]],
            short_cycle_factors=[0.5, 0.7071],
            default_s=(224, 224),
        ))
    with pytest.raises(AssertionError):
        LongShortCycleHook(multigrid_cfg)