test_bbox.py 6.04 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
from abc import abstractproperty

import numpy as np
import torch

from mmaction.core.bbox import bbox2result, bbox_target
from mmaction.datasets import AVADataset


def test_assigner_sampler():
    try:
        from mmdet.core.bbox import build_assigner, build_sampler
    except (ImportError, ModuleNotFoundError):
        raise ImportError(
            'Failed to import `build_assigner` and `build_sampler` '
            'from `mmdet.core.bbox`. The two APIs are required for '
            'the testing in `test_bbox.py`! ')
    data_prefix = osp.normpath(
        osp.join(osp.dirname(__file__), '../data/eval_detection'))
    ann_file = osp.join(data_prefix, 'gt.csv')
    label_file = osp.join(data_prefix, 'action_list.txt')
    proposal_file = osp.join(data_prefix, 'proposal.pkl')
    dataset = AVADataset(
        ann_file=ann_file,
        exclude_file=None,
        pipeline=[],
        label_file=label_file,
        proposal_file=proposal_file,
        num_classes=4)

    assigner = dict(
        type='MaxIoUAssignerAVA',
        pos_iou_thr=0.5,
        neg_iou_thr=0.5,
        min_pos_iou=0.5)
    assigner = build_assigner(assigner)
    proposal = torch.tensor(dataset[0]['proposals'])

    gt_bboxes = torch.tensor(dataset[0]['gt_bboxes'])
    gt_labels = torch.tensor(dataset[0]['gt_labels'])
    assign_result = assigner.assign(
        bboxes=proposal,
        gt_bboxes=gt_bboxes,
        gt_bboxes_ignore=None,
        gt_labels=gt_labels)
    assert assign_result.num_gts == 4
    assert torch.all(
        assign_result.gt_inds == torch.tensor([0, 0, 3, 3, 0, 0, 0, 1, 0, 0]))
    assert torch.all(
        torch.isclose(
            assign_result.max_overlaps,
            torch.tensor([
                0.40386841, 0.47127257, 0.53544776, 0.58797631, 0.29281288,
                0.40979504, 0.45902917, 0.50093938, 0.21560125, 0.32948171
            ],
                         dtype=torch.float64)))
    assert torch.all(
        torch.isclose(
            assign_result.labels,
            torch.tensor([[0., 0., 0., 0.], [0., 0., 0., 0.], [0., 1., 0., 0.],
                          [0., 1., 0., 0.], [0., 0., 0., 0.], [0., 0., 0., 0.],
                          [0., 0., 0., 0.], [0., 0., 0., 1.], [0., 0., 0., 0.],
                          [0., 0., 0., 0.]])))
    sampler = dict(type='RandomSampler', num=32, pos_fraction=1)
    sampler = build_sampler(sampler)
    sampling_result = sampler.sample(assign_result, proposal, gt_bboxes,
                                     gt_labels)
    assert (sampling_result.pos_inds.shape[0] ==
            sampling_result.pos_bboxes.shape[0])
    assert (sampling_result.neg_inds.shape[0] ==
            sampling_result.neg_bboxes.shape[0])
    return sampling_result


def test_bbox2result():
    bboxes = torch.tensor([[0.072, 0.47, 0.84, 0.898],
                           [0.23, 0.215, 0.781, 0.534],
                           [0.195, 0.128, 0.643, 0.944],
                           [0.236, 0.189, 0.689, 0.74],
                           [0.375, 0.371, 0.726, 0.804],
                           [0.024, 0.398, 0.776, 0.719]])
    labels = torch.tensor([[-1.650, 0.515, 0.798, 1.240],
                           [1.368, -1.128, 0.037, -1.087],
                           [0.481, -1.303, 0.501, -0.463],
                           [-0.356, 0.126, -0.840, 0.438],
                           [0.079, 1.269, -0.263, -0.538],
                           [-0.853, 0.391, 0.103, 0.398]])
    num_classes = 4
    #  Test for multi-label
    result = bbox2result(bboxes, labels, num_classes)
    assert np.all(
        np.isclose(
            result[0],
            np.array([[0.072, 0.47, 0.84, 0.898, 0.515],
                      [0.236, 0.189, 0.689, 0.74, 0.126],
                      [0.375, 0.371, 0.726, 0.804, 1.269],
                      [0.024, 0.398, 0.776, 0.719, 0.391]])))
    assert np.all(
        np.isclose(
            result[1],
            np.array([[0.072, 0.47, 0.84, 0.898, 0.798],
                      [0.23, 0.215, 0.781, 0.534, 0.037],
                      [0.195, 0.128, 0.643, 0.944, 0.501],
                      [0.024, 0.398, 0.776, 0.719, 0.103]])))
    assert np.all(
        np.isclose(
            result[2],
            np.array([[0.072, 0.47, 0.84, 0.898, 1.24],
                      [0.236, 0.189, 0.689, 0.74, 0.438],
                      [0.024, 0.398, 0.776, 0.719, 0.398]])))

    # Test for single-label
    result = bbox2result(bboxes, labels, num_classes, -1.0)
    assert np.all(
        np.isclose(result[0], np.array([[0.375, 0.371, 0.726, 0.804, 1.269]])))
    assert np.all(
        np.isclose(
            result[1],
            np.array([[0.23, 0.215, 0.781, 0.534, 0.037],
                      [0.195, 0.128, 0.643, 0.944, 0.501]])))
    assert np.all(
        np.isclose(
            result[2],
            np.array([[0.072, 0.47, 0.84, 0.898, 1.240],
                      [0.236, 0.189, 0.689, 0.74, 0.438],
                      [0.024, 0.398, 0.776, 0.719, 0.398]])))


def test_bbox_target():
    pos_bboxes = torch.tensor([[0.072, 0.47, 0.84, 0.898],
                               [0.23, 0.215, 0.781, 0.534],
                               [0.195, 0.128, 0.643, 0.944],
                               [0.236, 0.189, 0.689, 0.74]])
    neg_bboxes = torch.tensor([[0.375, 0.371, 0.726, 0.804],
                               [0.024, 0.398, 0.776, 0.719]])
    pos_gt_labels = torch.tensor([[0., 0., 1., 0.], [0., 0., 0., 1.],
                                  [0., 1., 0., 0.], [0., 1., 0., 0.]])
    cfg = abstractproperty()
    cfg.pos_weight = 0.8
    labels, label_weights = bbox_target([pos_bboxes], [neg_bboxes],
                                        [pos_gt_labels], cfg)
    assert torch.all(
        torch.isclose(
            labels,
            torch.tensor([[0., 0., 1., 0.], [0., 0., 0., 1.], [0., 1., 0., 0.],
                          [0., 1., 0., 0.], [0., 0., 0., 0.], [0., 0., 0.,
                                                               0.]])))
    assert torch.all(
        torch.isclose(label_weights, torch.tensor([0.8] * 4 + [1.0] * 2)))