test_train.py 3.71 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import tempfile
from collections import OrderedDict

import pytest
import torch
import torch.nn as nn
from mmcv import Config
from torch.utils.data import Dataset

from mmaction.apis import train_model
from mmaction.datasets import DATASETS


@DATASETS.register_module()
class ExampleDataset(Dataset):

    def __init__(self, test_mode=False):
        self.test_mode = test_mode

    @staticmethod
    def evaluate(results, logger=None):
        eval_results = OrderedDict()
        eval_results['acc'] = 1
        return eval_results

    def __getitem__(self, idx):
        results = dict(imgs=torch.tensor([1]))
        return results

    def __len__(self):
        return 1


class ExampleModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.test_cfg = None
        self.conv1 = nn.Conv2d(3, 8, kernel_size=1)
        self.norm1 = nn.BatchNorm1d(2)

    def forward(self, imgs, return_loss=False):
        self.norm1(torch.rand(3, 2).cuda())
        losses = dict()
        losses['test_loss'] = torch.tensor([0.5], requires_grad=True)
        return losses

    def train_step(self, data_batch, optimizer, **kwargs):
        imgs = data_batch['imgs']
        losses = self.forward(imgs, True)
        loss = torch.tensor([0.5], requires_grad=True)
        outputs = dict(loss=loss, log_vars=losses, num_samples=3)
        return outputs

    def val_step(self, data_batch, optimizer, **kwargs):
        imgs = data_batch['imgs']
        self.forward(imgs, False)
        outputs = dict(results=0.5)
        return outputs


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_train_model():
    model = ExampleModel()
    dataset = ExampleDataset()
    datasets = [ExampleDataset(), ExampleDataset()]
    _cfg = dict(
        seed=0,
        gpus=1,
        gpu_ids=[0],
        resume_from=None,
        load_from=None,
        workflow=[('train', 1)],
        total_epochs=5,
        evaluation=dict(interval=1, save_best='acc'),
        data=dict(
            videos_per_gpu=1,
            workers_per_gpu=0,
            val=dict(type='ExampleDataset')),
        optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001),
        optimizer_config=dict(grad_clip=dict(max_norm=40, norm_type=2)),
        lr_config=dict(policy='step', step=[40, 80]),
        omnisource=False,
        precise_bn=False,
        checkpoint_config=dict(interval=1),
        log_level='INFO',
        log_config=dict(interval=20, hooks=[dict(type='TextLoggerHook')]))

    with tempfile.TemporaryDirectory() as tmpdir:
        # normal train
        cfg = copy.deepcopy(_cfg)
        cfg['work_dir'] = tmpdir
        config = Config(cfg)
        train_model(model, dataset, config)

    with tempfile.TemporaryDirectory() as tmpdir:
        # train with validation
        cfg = copy.deepcopy(_cfg)
        cfg['work_dir'] = tmpdir
        config = Config(cfg)
        train_model(model, dataset, config, validate=True)

    with tempfile.TemporaryDirectory() as tmpdir:
        cfg = copy.deepcopy(_cfg)
        cfg['work_dir'] = tmpdir
        cfg['omnisource'] = True
        config = Config(cfg)
        train_model(model, datasets, config)

    with tempfile.TemporaryDirectory() as tmpdir:
        # train with precise_bn on
        cfg = copy.deepcopy(_cfg)
        cfg['work_dir'] = tmpdir
        cfg['workflow'] = [('train', 1), ('val', 1)]
        cfg['data'] = dict(
            videos_per_gpu=1,
            workers_per_gpu=0,
            train=dict(type='ExampleDataset'),
            val=dict(type='ExampleDataset'))
        cfg['precise_bn'] = dict(num_iters=1, interval=1)
        config = Config(cfg)
        train_model(model, datasets, config)