test_precise_bn.py 6.35 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# Copyright (c) OpenMMLab. All rights reserved.
import copy

import numpy as np
import pytest
import torch
import torch.nn as nn
from mmcv.parallel import MMDistributedDataParallel
from mmcv.runner import EpochBasedRunner, build_optimizer
from mmcv.utils import get_logger
from torch.utils.data import DataLoader, Dataset

from mmaction.utils import PreciseBNHook


class ExampleDataset(Dataset):

    def __init__(self):
        self.index = 0

    def __getitem__(self, idx):
        results = dict(imgs=torch.tensor([1.0], dtype=torch.float32))
        return results

    def __len__(self):
        return 1


class BiggerDataset(ExampleDataset):

    def __init__(self, fixed_values=range(0, 12)):
        assert len(self) == len(fixed_values)
        self.fixed_values = fixed_values

    def __getitem__(self, idx):
        results = dict(
            imgs=torch.tensor([self.fixed_values[idx]], dtype=torch.float32))
        return results

    def __len__(self):
        # a bigger dataset
        return 12


class ExampleModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv = nn.Linear(1, 1)
        self.bn = nn.BatchNorm1d(1)
        self.test_cfg = None

    def forward(self, imgs, return_loss=False):
        return self.bn(self.conv(imgs))

    @staticmethod
    def train_step(data_batch, optimizer, **kwargs):
        outputs = {
            'loss': 0.5,
            'log_vars': {
                'accuracy': 0.98
            },
            'num_samples': 1
        }
        return outputs


class SingleBNModel(ExampleModel):

    def __init__(self):
        super().__init__()
        self.bn = nn.BatchNorm1d(1)
        self.test_cfg = None

    def forward(self, imgs, return_loss=False):
        return self.bn(imgs)


class GNExampleModel(ExampleModel):

    def __init__(self):
        super().__init__()
        self.conv = nn.Linear(1, 1)
        self.bn = nn.GroupNorm(1, 1)
        self.test_cfg = None


class NoBNExampleModel(ExampleModel):

    def __init__(self):
        super().__init__()
        self.conv = nn.Linear(1, 1)
        self.test_cfg = None

    def forward(self, imgs, return_loss=False):
        return self.conv(imgs)


def test_precise_bn():
    with pytest.raises(TypeError):
        # `data_loader` must be a Pytorch DataLoader
        test_dataset = ExampleModel()
        data_loader = DataLoader(
            test_dataset,
            batch_size=2,
            sampler=None,
            num_workers=0,
            shuffle=False)
        PreciseBNHook('data_loader')

    optimizer_cfg = dict(
        type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)

    test_dataset = ExampleDataset()
    loader = DataLoader(test_dataset, batch_size=2)
    model = ExampleModel()
    optimizer = build_optimizer(model, optimizer_cfg)

    data_loader = DataLoader(test_dataset, batch_size=2)
    precise_bn_loader = copy.deepcopy(data_loader)
    logger = get_logger('precise_bn')
    runner = EpochBasedRunner(
        model=model, batch_processor=None, optimizer=optimizer, logger=logger)

    with pytest.raises(AssertionError):
        # num_iters should be no larger than total
        # iters
        precise_bn_hook = PreciseBNHook(precise_bn_loader, num_iters=5)
        runner.register_hook(precise_bn_hook)
        runner.run([loader], [('train', 1)], 1)

    # test non-DDP model
    test_bigger_dataset = BiggerDataset()
    loader = DataLoader(test_bigger_dataset, batch_size=2)
    precise_bn_hook = PreciseBNHook(loader, num_iters=5)
    assert precise_bn_hook.num_iters == 5
    assert precise_bn_hook.interval == 1
    runner = EpochBasedRunner(
        model=model, batch_processor=None, optimizer=optimizer, logger=logger)
    runner.register_hook(precise_bn_hook)
    runner.run([loader], [('train', 1)], 1)

    # test model w/ gn layer
    loader = DataLoader(test_bigger_dataset, batch_size=2)
    precise_bn_hook = PreciseBNHook(loader, num_iters=5)
    assert precise_bn_hook.num_iters == 5
    assert precise_bn_hook.interval == 1
    model = GNExampleModel()
    runner = EpochBasedRunner(
        model=model, batch_processor=None, optimizer=optimizer, logger=logger)
    runner.register_hook(precise_bn_hook)
    runner.run([loader], [('train', 1)], 1)

    # test model without bn layer
    loader = DataLoader(test_bigger_dataset, batch_size=2)
    precise_bn_hook = PreciseBNHook(loader, num_iters=5)
    assert precise_bn_hook.num_iters == 5
    assert precise_bn_hook.interval == 1
    model = NoBNExampleModel()
    runner = EpochBasedRunner(
        model=model, batch_processor=None, optimizer=optimizer, logger=logger)
    runner.register_hook(precise_bn_hook)
    runner.run([loader], [('train', 1)], 1)

    # test how precise it is
    loader = DataLoader(test_bigger_dataset, batch_size=2)
    precise_bn_hook = PreciseBNHook(loader, num_iters=6)  # run all
    assert precise_bn_hook.num_iters == 6
    assert precise_bn_hook.interval == 1
    model = SingleBNModel()
    runner = EpochBasedRunner(
        model=model, batch_processor=None, optimizer=optimizer, logger=logger)
    runner.register_hook(precise_bn_hook)
    runner.run([loader], [('train', 1)], 1)
    imgs_list = list()
    for _, data in enumerate(loader):
        imgs_list.append(np.array(data['imgs']))
    mean = np.mean([np.mean(batch) for batch in imgs_list])
    # bassel correction used in Pytorch, therefore ddof=1
    var = np.mean([np.var(batch, ddof=1) for batch in imgs_list])
    assert np.equal(mean, np.array(model.bn.running_mean))
    assert np.equal(var, np.array(model.bn.running_var))

    @pytest.mark.skipif(
        not torch.cuda.is_available(), reason='requires CUDA support')
    def test_ddp_model_precise_bn():
        # test DDP model
        test_bigger_dataset = BiggerDataset()
        loader = DataLoader(test_bigger_dataset, batch_size=2)
        precise_bn_hook = PreciseBNHook(loader, num_iters=5)
        assert precise_bn_hook.num_iters == 5
        assert precise_bn_hook.interval == 1
        model = ExampleModel()
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=True)
        runner = EpochBasedRunner(
            model=model,
            batch_processor=None,
            optimizer=optimizer,
            logger=logger)
        runner.register_hook(precise_bn_hook)
        runner.run([loader], [('train', 1)], 1)