"docs/basic_usage/deepseek.md" did not exist on "75b656488a6418c14421611132ea0b4bc10e993d"
test_inference.py 5.69 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright (c) OpenMMLab. All rights reserved.
import mmcv
import numpy as np
import pytest
import torch
import torch.nn as nn

from mmaction.apis import inference_recognizer, init_recognizer

video_config_file = 'configs/recognition/tsn/tsn_r50_video_inference_1x1x3_100e_kinetics400_rgb.py'  # noqa: E501
frame_config_file = 'configs/recognition/tsn/tsn_r50_inference_1x1x3_100e_kinetics400_rgb.py'  # noqa: E501
flow_frame_config_file = 'configs/recognition/tsn/tsn_r50_320p_1x1x3_110e_kinetics400_flow.py'  # noqa: E501
video_path = 'demo/demo.mp4'
frames_path = 'tests/data/imgs'


def test_init_recognizer():
    with pytest.raises(TypeError):
        # config must be a filename or Config object
        init_recognizer(dict(config_file=None))

    if torch.cuda.is_available():
        device = 'cuda:0'
    else:
        device = 'cpu'

    model = init_recognizer(video_config_file, None, device)

    config = mmcv.Config.fromfile(video_config_file)
    config.model.backbone.pretrained = None

    isinstance(model, nn.Module)
    if torch.cuda.is_available():
        assert next(model.parameters()).is_cuda is True
    else:
        assert next(model.parameters()).is_cuda is False
    assert model.cfg.model.backbone.pretrained is None


def test_video_inference_recognizer():
    if torch.cuda.is_available():
        device = 'cuda:0'
    else:
        device = 'cpu'
    model = init_recognizer(video_config_file, None, device)

    with pytest.raises(RuntimeError):
        # video path doesn't exist
        inference_recognizer(model, 'missing.mp4')

    for ops in model.cfg.data.test.pipeline:
        if ops['type'] in ('TenCrop', 'ThreeCrop'):
            # Use CenterCrop to reduce memory in order to pass CI
            ops['type'] = 'CenterCrop'

    top5_label = inference_recognizer(model, video_path)
    scores = [item[1] for item in top5_label]
    assert len(top5_label) == 5
    assert scores == sorted(scores, reverse=True)

    _, feat = inference_recognizer(
        model, video_path, outputs=('backbone', 'cls_head'), as_tensor=False)
    assert isinstance(feat, dict)
    assert 'backbone' in feat and 'cls_head' in feat
    assert isinstance(feat['backbone'], np.ndarray)
    assert isinstance(feat['cls_head'], np.ndarray)
    assert feat['backbone'].shape == (25, 2048, 7, 7)
    assert feat['cls_head'].shape == (1, 400)

    _, feat = inference_recognizer(
        model,
        video_path,
        outputs=('backbone.layer3', 'backbone.layer3.1.conv1'))
    assert 'backbone.layer3.1.conv1' in feat and 'backbone.layer3' in feat
    assert isinstance(feat['backbone.layer3.1.conv1'], torch.Tensor)
    assert isinstance(feat['backbone.layer3'], torch.Tensor)
    assert feat['backbone.layer3'].size() == (25, 1024, 14, 14)
    assert feat['backbone.layer3.1.conv1'].size() == (25, 256, 14, 14)

    cfg_file = 'configs/recognition/slowfast/slowfast_r50_video_inference_4x16x1_256e_kinetics400_rgb.py'  # noqa: E501
    sf_model = init_recognizer(cfg_file, None, device)
    for ops in sf_model.cfg.data.test.pipeline:
        # Changes to reduce memory in order to pass CI
        if ops['type'] in ('TenCrop', 'ThreeCrop'):
            ops['type'] = 'CenterCrop'
        if ops['type'] == 'SampleFrames':
            ops['num_clips'] = 1
    _, feat = inference_recognizer(
        sf_model, video_path, outputs=('backbone', 'cls_head'))
    assert isinstance(feat, dict) and isinstance(feat['backbone'], tuple)
    assert 'backbone' in feat and 'cls_head' in feat
    assert len(feat['backbone']) == 2
    assert isinstance(feat['backbone'][0], torch.Tensor)
    assert isinstance(feat['backbone'][1], torch.Tensor)
    assert feat['backbone'][0].size() == (1, 2048, 4, 8, 8)
    assert feat['backbone'][1].size() == (1, 256, 32, 8, 8)
    assert feat['cls_head'].size() == (1, 400)


def test_frames_inference_recognizer():
    if torch.cuda.is_available():
        device = 'cuda:0'
    else:
        device = 'cpu'
    rgb_model = init_recognizer(frame_config_file, None, device)
    flow_model = init_recognizer(flow_frame_config_file, None, device)

    with pytest.raises(RuntimeError):
        # video path doesn't exist
        inference_recognizer(rgb_model, 'missing_path')

    for ops in rgb_model.cfg.data.test.pipeline:
        if ops['type'] in ('TenCrop', 'ThreeCrop'):
            # Use CenterCrop to reduce memory in order to pass CI
            ops['type'] = 'CenterCrop'
            ops['crop_size'] = 224
    for ops in flow_model.cfg.data.test.pipeline:
        if ops['type'] in ('TenCrop', 'ThreeCrop'):
            # Use CenterCrop to reduce memory in order to pass CI
            ops['type'] = 'CenterCrop'
            ops['crop_size'] = 224

    top5_label = inference_recognizer(rgb_model, frames_path)
    scores = [item[1] for item in top5_label]
    assert len(top5_label) == 5
    assert scores == sorted(scores, reverse=True)

    _, feat = inference_recognizer(
        flow_model,
        frames_path,
        outputs=('backbone', 'cls_head'),
        as_tensor=False)
    assert isinstance(feat, dict)
    assert 'backbone' in feat and 'cls_head' in feat
    assert isinstance(feat['backbone'], np.ndarray)
    assert isinstance(feat['cls_head'], np.ndarray)
    assert feat['backbone'].shape == (25, 2048, 7, 7)
    assert feat['cls_head'].shape == (1, 400)

    _, feat = inference_recognizer(
        rgb_model,
        frames_path,
        outputs=('backbone.layer3', 'backbone.layer3.1.conv1'))

    assert 'backbone.layer3.1.conv1' in feat and 'backbone.layer3' in feat
    assert isinstance(feat['backbone.layer3.1.conv1'], torch.Tensor)
    assert isinstance(feat['backbone.layer3'], torch.Tensor)
    assert feat['backbone.layer3'].size() == (25, 1024, 14, 14)
    assert feat['backbone.layer3.1.conv1'].size() == (25, 256, 14, 14)