test_gradcam.py 8.21 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch

from mmaction.models import build_recognizer
from mmaction.utils.gradcam_utils import GradCAM
from .base import generate_gradcam_inputs, get_recognizer_cfg


def _get_target_shapes(input_shape, num_classes=400, model_type='2D'):
    if model_type not in ['2D', '3D']:
        raise ValueError(f'Data type {model_type} is not available')

    preds_target_shape = (input_shape[0], num_classes)
    if model_type == '3D':
        # input shape (batch_size, num_crops*num_clips, C, clip_len, H, W)
        # target shape (batch_size*num_crops*num_clips, clip_len, H, W, C)
        blended_imgs_target_shape = (input_shape[0] * input_shape[1],
                                     input_shape[3], input_shape[4],
                                     input_shape[5], input_shape[2])
    else:
        # input shape (batch_size, num_segments, C, H, W)
        # target shape (batch_size, num_segments, H, W, C)
        blended_imgs_target_shape = (input_shape[0], input_shape[1],
                                     input_shape[3], input_shape[4],
                                     input_shape[2])

    return blended_imgs_target_shape, preds_target_shape


def _do_test_2D_models(recognizer,
                       target_layer_name,
                       input_shape,
                       num_classes=400,
                       device='cpu'):
    demo_inputs = generate_gradcam_inputs(input_shape)
    demo_inputs['imgs'] = demo_inputs['imgs'].to(device)
    demo_inputs['label'] = demo_inputs['label'].to(device)

    recognizer = recognizer.to(device)
    gradcam = GradCAM(recognizer, target_layer_name)

    blended_imgs_target_shape, preds_target_shape = _get_target_shapes(
        input_shape, num_classes=num_classes, model_type='2D')

    blended_imgs, preds = gradcam(demo_inputs)
    assert blended_imgs.size() == blended_imgs_target_shape
    assert preds.size() == preds_target_shape

    blended_imgs, preds = gradcam(demo_inputs, True)
    assert blended_imgs.size() == blended_imgs_target_shape
    assert preds.size() == preds_target_shape


def _do_test_3D_models(recognizer,
                       target_layer_name,
                       input_shape,
                       num_classes=400):
    blended_imgs_target_shape, preds_target_shape = _get_target_shapes(
        input_shape, num_classes=num_classes, model_type='3D')
    demo_inputs = generate_gradcam_inputs(input_shape, '3D')

    # parrots 3dconv is only implemented on gpu
    if torch.__version__ == 'parrots':
        if torch.cuda.is_available():
            recognizer = recognizer.cuda()
            demo_inputs['imgs'] = demo_inputs['imgs'].cuda()
            demo_inputs['label'] = demo_inputs['label'].cuda()
            gradcam = GradCAM(recognizer, target_layer_name)

            blended_imgs, preds = gradcam(demo_inputs)
            assert blended_imgs.size() == blended_imgs_target_shape
            assert preds.size() == preds_target_shape

            blended_imgs, preds = gradcam(demo_inputs, True)
            assert blended_imgs.size() == blended_imgs_target_shape
            assert preds.size() == preds_target_shape
    else:
        gradcam = GradCAM(recognizer, target_layer_name)

        blended_imgs, preds = gradcam(demo_inputs)
        assert blended_imgs.size() == blended_imgs_target_shape
        assert preds.size() == preds_target_shape

        blended_imgs, preds = gradcam(demo_inputs, True)
        assert blended_imgs.size() == blended_imgs_target_shape
        assert preds.size() == preds_target_shape


def test_tsn():
    config = get_recognizer_cfg('tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py')
    config.model['backbone']['pretrained'] = None
    recognizer = build_recognizer(config.model)
    recognizer.cfg = config

    input_shape = (1, 25, 3, 32, 32)
    target_layer_name = 'backbone/layer4/1/relu'

    _do_test_2D_models(recognizer, target_layer_name, input_shape)


def test_i3d():
    config = get_recognizer_cfg('i3d/i3d_r50_32x2x1_100e_kinetics400_rgb.py')
    config.model['backbone']['pretrained2d'] = False
    config.model['backbone']['pretrained'] = None

    recognizer = build_recognizer(config.model)
    recognizer.cfg = config

    input_shape = [1, 1, 3, 32, 32, 32]
    target_layer_name = 'backbone/layer4/1/relu'

    _do_test_3D_models(recognizer, target_layer_name, input_shape)


def test_r2plus1d():
    config = get_recognizer_cfg(
        'r2plus1d/r2plus1d_r34_8x8x1_180e_kinetics400_rgb.py')
    config.model['backbone']['pretrained2d'] = False
    config.model['backbone']['pretrained'] = None
    config.model['backbone']['norm_cfg'] = dict(type='BN3d')

    recognizer = build_recognizer(config.model)
    recognizer.cfg = config

    input_shape = (1, 3, 3, 8, 32, 32)
    target_layer_name = 'backbone/layer4/1/relu'

    _do_test_3D_models(recognizer, target_layer_name, input_shape)


def test_slowfast():
    config = get_recognizer_cfg(
        'slowfast/slowfast_r50_4x16x1_256e_kinetics400_rgb.py')

    recognizer = build_recognizer(config.model)
    recognizer.cfg = config

    input_shape = (1, 1, 3, 32, 32, 32)
    target_layer_name = 'backbone/slow_path/layer4/1/relu'

    _do_test_3D_models(recognizer, target_layer_name, input_shape)


def test_tsm():
    config = get_recognizer_cfg('tsm/tsm_r50_1x1x8_50e_kinetics400_rgb.py')
    config.model['backbone']['pretrained'] = None
    target_layer_name = 'backbone/layer4/1/relu'

    # base config
    recognizer = build_recognizer(config.model)
    recognizer.cfg = config
    input_shape = (1, 8, 3, 32, 32)
    _do_test_2D_models(recognizer, target_layer_name, input_shape)

    # test twice sample + 3 crops, 2*3*8=48
    config.model.test_cfg = dict(average_clips='prob')
    recognizer = build_recognizer(config.model)
    recognizer.cfg = config
    input_shape = (1, 48, 3, 32, 32)
    _do_test_2D_models(recognizer, target_layer_name, input_shape)


def test_csn():
    config = get_recognizer_cfg(
        'csn/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb.py')
    config.model['backbone']['pretrained2d'] = False
    config.model['backbone']['pretrained'] = None

    recognizer = build_recognizer(config.model)
    recognizer.cfg = config
    input_shape = (1, 1, 3, 32, 32, 32)
    target_layer_name = 'backbone/layer4/1/relu'

    _do_test_3D_models(recognizer, target_layer_name, input_shape)


def test_tpn():
    target_layer_name = 'backbone/layer4/1/relu'

    config = get_recognizer_cfg('tpn/tpn_tsm_r50_1x1x8_150e_sthv1_rgb.py')
    config.model['backbone']['pretrained'] = None
    recognizer = build_recognizer(config.model)
    recognizer.cfg = config

    input_shape = (1, 8, 3, 32, 32)
    _do_test_2D_models(recognizer, target_layer_name, input_shape, 174)

    config = get_recognizer_cfg(
        'tpn/tpn_slowonly_r50_8x8x1_150e_kinetics_rgb.py')
    config.model['backbone']['pretrained'] = None
    recognizer = build_recognizer(config.model)
    recognizer.cfg = config
    input_shape = (1, 3, 3, 8, 32, 32)
    _do_test_3D_models(recognizer, target_layer_name, input_shape)


def test_c3d():
    config = get_recognizer_cfg('c3d/c3d_sports1m_16x1x1_45e_ucf101_rgb.py')
    config.model['backbone']['pretrained'] = None
    recognizer = build_recognizer(config.model)
    recognizer.cfg = config
    input_shape = (1, 1, 3, 16, 112, 112)
    target_layer_name = 'backbone/conv5a/activate'
    _do_test_3D_models(recognizer, target_layer_name, input_shape, 101)


@pytest.mark.skipif(
    not torch.cuda.is_available(), reason='requires CUDA support')
def test_tin():
    config = get_recognizer_cfg(
        'tin/tin_tsm_finetune_r50_1x1x8_50e_kinetics400_rgb.py')
    config.model['backbone']['pretrained'] = None
    target_layer_name = 'backbone/layer4/1/relu'

    recognizer = build_recognizer(config.model)
    recognizer.cfg = config
    input_shape = (1, 8, 3, 64, 64)
    _do_test_2D_models(
        recognizer, target_layer_name, input_shape, device='cuda:0')


def test_x3d():
    config = get_recognizer_cfg('x3d/x3d_s_13x6x1_facebook_kinetics400_rgb.py')
    config.model['backbone']['pretrained'] = None
    recognizer = build_recognizer(config.model)
    recognizer.cfg = config
    input_shape = (1, 1, 3, 13, 32, 32)
    target_layer_name = 'backbone/layer4/1/relu'
    _do_test_3D_models(recognizer, target_layer_name, input_shape)