bmn.py 17.4 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# Copyright (c) OpenMMLab. All rights reserved.
import math

import numpy as np
import torch
import torch.nn as nn

from ...localization import temporal_iop, temporal_iou
from ..builder import LOCALIZERS, build_loss
from .base import BaseTAPGenerator
from .utils import post_processing


@LOCALIZERS.register_module()
class BMN(BaseTAPGenerator):
    """Boundary Matching Network for temporal action proposal generation.

    Please refer `BMN: Boundary-Matching Network for Temporal Action Proposal
    Generation <https://arxiv.org/abs/1907.09702>`_.
    Code Reference https://github.com/JJBOY/BMN-Boundary-Matching-Network

    Args:
        temporal_dim (int): Total frames selected for each video.
        boundary_ratio (float): Ratio for determining video boundaries.
        num_samples (int): Number of samples for each proposal.
        num_samples_per_bin (int): Number of bin samples for each sample.
        feat_dim (int): Feature dimension.
        soft_nms_alpha (float): Soft NMS alpha.
        soft_nms_low_threshold (float): Soft NMS low threshold.
        soft_nms_high_threshold (float): Soft NMS high threshold.
        post_process_top_k (int): Top k proposals in post process.
        feature_extraction_interval (int):
            Interval used in feature extraction. Default: 16.
        loss_cls (dict): Config for building loss.
            Default: ``dict(type='BMNLoss')``.
        hidden_dim_1d (int): Hidden dim for 1d conv. Default: 256.
        hidden_dim_2d (int): Hidden dim for 2d conv. Default: 128.
        hidden_dim_3d (int): Hidden dim for 3d conv. Default: 512.
    """

    def __init__(self,
                 temporal_dim,
                 boundary_ratio,
                 num_samples,
                 num_samples_per_bin,
                 feat_dim,
                 soft_nms_alpha,
                 soft_nms_low_threshold,
                 soft_nms_high_threshold,
                 post_process_top_k,
                 feature_extraction_interval=16,
                 loss_cls=dict(type='BMNLoss'),
                 hidden_dim_1d=256,
                 hidden_dim_2d=128,
                 hidden_dim_3d=512):
        super().__init__()

        self.tscale = temporal_dim
        self.boundary_ratio = boundary_ratio
        self.num_samples = num_samples
        self.num_samples_per_bin = num_samples_per_bin
        self.feat_dim = feat_dim
        self.soft_nms_alpha = soft_nms_alpha
        self.soft_nms_low_threshold = soft_nms_low_threshold
        self.soft_nms_high_threshold = soft_nms_high_threshold
        self.post_process_top_k = post_process_top_k
        self.feature_extraction_interval = feature_extraction_interval
        self.loss_cls = build_loss(loss_cls)
        self.hidden_dim_1d = hidden_dim_1d
        self.hidden_dim_2d = hidden_dim_2d
        self.hidden_dim_3d = hidden_dim_3d

        self._get_interp1d_mask()

        # Base Module
        self.x_1d_b = nn.Sequential(
            nn.Conv1d(
                self.feat_dim,
                self.hidden_dim_1d,
                kernel_size=3,
                padding=1,
                groups=4), nn.ReLU(inplace=True),
            nn.Conv1d(
                self.hidden_dim_1d,
                self.hidden_dim_1d,
                kernel_size=3,
                padding=1,
                groups=4), nn.ReLU(inplace=True))

        # Temporal Evaluation Module
        self.x_1d_s = nn.Sequential(
            nn.Conv1d(
                self.hidden_dim_1d,
                self.hidden_dim_1d,
                kernel_size=3,
                padding=1,
                groups=4), nn.ReLU(inplace=True),
            nn.Conv1d(self.hidden_dim_1d, 1, kernel_size=1), nn.Sigmoid())
        self.x_1d_e = nn.Sequential(
            nn.Conv1d(
                self.hidden_dim_1d,
                self.hidden_dim_1d,
                kernel_size=3,
                padding=1,
                groups=4), nn.ReLU(inplace=True),
            nn.Conv1d(self.hidden_dim_1d, 1, kernel_size=1), nn.Sigmoid())

        # Proposal Evaluation Module
        self.x_1d_p = nn.Sequential(
            nn.Conv1d(
                self.hidden_dim_1d,
                self.hidden_dim_1d,
                kernel_size=3,
                padding=1), nn.ReLU(inplace=True))
        self.x_3d_p = nn.Sequential(
            nn.Conv3d(
                self.hidden_dim_1d,
                self.hidden_dim_3d,
                kernel_size=(self.num_samples, 1, 1)), nn.ReLU(inplace=True))
        self.x_2d_p = nn.Sequential(
            nn.Conv2d(self.hidden_dim_3d, self.hidden_dim_2d, kernel_size=1),
            nn.ReLU(inplace=True),
            nn.Conv2d(
                self.hidden_dim_2d,
                self.hidden_dim_2d,
                kernel_size=3,
                padding=1), nn.ReLU(inplace=True),
            nn.Conv2d(
                self.hidden_dim_2d,
                self.hidden_dim_2d,
                kernel_size=3,
                padding=1), nn.ReLU(inplace=True),
            nn.Conv2d(self.hidden_dim_2d, 2, kernel_size=1), nn.Sigmoid())
        self.anchors_tmins, self.anchors_tmaxs = self._temporal_anchors(
            -0.5, 1.5)
        self.match_map = self._match_map()
        self.bm_mask = self._get_bm_mask()

    def _match_map(self):
        """Generate match map."""
        temporal_gap = 1. / self.tscale
        match_map = []
        for idx in range(self.tscale):
            match_window = []
            tmin = temporal_gap * idx
            for jdx in range(1, self.tscale + 1):
                tmax = tmin + temporal_gap * jdx
                match_window.append([tmin, tmax])
            match_map.append(match_window)
        match_map = np.array(match_map)
        match_map = np.transpose(match_map, [1, 0, 2])
        match_map = np.reshape(match_map, [-1, 2])
        return match_map

    def _temporal_anchors(self, tmin_offset=0., tmax_offset=1.):
        """Generate temporal anchors.

        Args:
            tmin_offset (int): Offset for the minimum value of temporal anchor.
                Default: 0.
            tmax_offset (int): Offset for the maximum value of temporal anchor.
                Default: 1.

        Returns:
            tuple[Sequence[float]]: The minimum and maximum values of temporal
                anchors.
        """
        temporal_gap = 1. / self.tscale
        anchors_tmins = []
        anchors_tmaxs = []
        for i in range(self.tscale):
            anchors_tmins.append(temporal_gap * (i + tmin_offset))
            anchors_tmaxs.append(temporal_gap * (i + tmax_offset))

        return anchors_tmins, anchors_tmaxs

    def _forward(self, x):
        """Define the computation performed at every call.

        Args:
            x (torch.Tensor): The input data.

        Returns:
            torch.Tensor: The output of the module.
        """
        # x.shape [batch_size, self.feat_dim, self.tscale]
        base_feature = self.x_1d_b(x)
        # base_feature.shape [batch_size, self.hidden_dim_1d, self.tscale]
        start = self.x_1d_s(base_feature).squeeze(1)
        # start.shape [batch_size, self.tscale]
        end = self.x_1d_e(base_feature).squeeze(1)
        # end.shape [batch_size, self.tscale]
        confidence_map = self.x_1d_p(base_feature)
        # [batch_size, self.hidden_dim_1d, self.tscale]
        confidence_map = self._boundary_matching_layer(confidence_map)
        # [batch_size, self.hidden_dim_1d,, self.num_sampls, self.tscale, self.tscale] # noqa
        confidence_map = self.x_3d_p(confidence_map).squeeze(2)
        # [batch_size, self.hidden_dim_3d, self.tscale, self.tscale]
        confidence_map = self.x_2d_p(confidence_map)
        # [batch_size, 2, self.tscale, self.tscale]

        return confidence_map, start, end

    def _boundary_matching_layer(self, x):
        """Generate matching layer."""
        input_size = x.size()
        out = torch.matmul(x,
                           self.sample_mask).reshape(input_size[0],
                                                     input_size[1],
                                                     self.num_samples,
                                                     self.tscale, self.tscale)
        return out

    def forward_test(self, raw_feature, video_meta):
        """Define the computation performed at every call when testing."""
        confidence_map, start, end = self._forward(raw_feature)
        start_scores = start[0].cpu().numpy()
        end_scores = end[0].cpu().numpy()
        cls_confidence = (confidence_map[0][1]).cpu().numpy()
        reg_confidence = (confidence_map[0][0]).cpu().numpy()

        max_start = max(start_scores)
        max_end = max(end_scores)

        # generate the set of start points and end points
        start_bins = np.zeros(len(start_scores))
        start_bins[0] = 1  # [1,0,0...,0,0]
        end_bins = np.zeros(len(end_scores))
        end_bins[-1] = 1  # [0,0,0...,0,1]
        for idx in range(1, self.tscale - 1):
            if start_scores[idx] > start_scores[
                    idx + 1] and start_scores[idx] > start_scores[idx - 1]:
                start_bins[idx] = 1
            elif start_scores[idx] > (0.5 * max_start):
                start_bins[idx] = 1
            if end_scores[idx] > end_scores[
                    idx + 1] and end_scores[idx] > end_scores[idx - 1]:
                end_bins[idx] = 1
            elif end_scores[idx] > (0.5 * max_end):
                end_bins[idx] = 1

        # iterate through all combinations of start_index and end_index
        new_proposals = []
        for idx in range(self.tscale):
            for jdx in range(self.tscale):
                start_index = jdx
                end_index = start_index + idx + 1
                if end_index < self.tscale and start_bins[
                        start_index] == 1 and end_bins[end_index] == 1:
                    tmin = start_index / self.tscale
                    tmax = end_index / self.tscale
                    tmin_score = start_scores[start_index]
                    tmax_score = end_scores[end_index]
                    cls_score = cls_confidence[idx, jdx]
                    reg_score = reg_confidence[idx, jdx]
                    score = tmin_score * tmax_score * cls_score * reg_score
                    new_proposals.append([
                        tmin, tmax, tmin_score, tmax_score, cls_score,
                        reg_score, score
                    ])
        new_proposals = np.stack(new_proposals)
        video_info = dict(video_meta[0])
        proposal_list = post_processing(new_proposals, video_info,
                                        self.soft_nms_alpha,
                                        self.soft_nms_low_threshold,
                                        self.soft_nms_high_threshold,
                                        self.post_process_top_k,
                                        self.feature_extraction_interval)
        output = [
            dict(
                video_name=video_info['video_name'],
                proposal_list=proposal_list)
        ]
        return output

    def forward_train(self, raw_feature, label_confidence, label_start,
                      label_end):
        """Define the computation performed at every call when training."""
        confidence_map, start, end = self._forward(raw_feature)
        loss = self.loss_cls(confidence_map, start, end, label_confidence,
                             label_start, label_end,
                             self.bm_mask.to(raw_feature.device))
        loss_dict = dict(loss=loss[0])
        return loss_dict

    def generate_labels(self, gt_bbox):
        """Generate training labels."""
        match_score_confidence_list = []
        match_score_start_list = []
        match_score_end_list = []
        for every_gt_bbox in gt_bbox:
            gt_iou_map = []
            for start, end in every_gt_bbox:
                if isinstance(start, torch.Tensor):
                    start = start.numpy()
                if isinstance(end, torch.Tensor):
                    end = end.numpy()
                current_gt_iou_map = temporal_iou(self.match_map[:, 0],
                                                  self.match_map[:, 1], start,
                                                  end)
                current_gt_iou_map = np.reshape(current_gt_iou_map,
                                                [self.tscale, self.tscale])
                gt_iou_map.append(current_gt_iou_map)
            gt_iou_map = np.array(gt_iou_map).astype(np.float32)
            gt_iou_map = np.max(gt_iou_map, axis=0)

            gt_tmins = every_gt_bbox[:, 0]
            gt_tmaxs = every_gt_bbox[:, 1]

            gt_len_pad = 3 * (1. / self.tscale)

            gt_start_bboxs = np.stack(
                (gt_tmins - gt_len_pad / 2, gt_tmins + gt_len_pad / 2), axis=1)
            gt_end_bboxs = np.stack(
                (gt_tmaxs - gt_len_pad / 2, gt_tmaxs + gt_len_pad / 2), axis=1)

            match_score_start = []
            match_score_end = []

            for anchor_tmin, anchor_tmax in zip(self.anchors_tmins,
                                                self.anchors_tmaxs):
                match_score_start.append(
                    np.max(
                        temporal_iop(anchor_tmin, anchor_tmax,
                                     gt_start_bboxs[:, 0], gt_start_bboxs[:,
                                                                          1])))
                match_score_end.append(
                    np.max(
                        temporal_iop(anchor_tmin, anchor_tmax,
                                     gt_end_bboxs[:, 0], gt_end_bboxs[:, 1])))
            match_score_confidence_list.append(gt_iou_map)
            match_score_start_list.append(match_score_start)
            match_score_end_list.append(match_score_end)
        match_score_confidence_list = torch.Tensor(match_score_confidence_list)
        match_score_start_list = torch.Tensor(match_score_start_list)
        match_score_end_list = torch.Tensor(match_score_end_list)
        return (match_score_confidence_list, match_score_start_list,
                match_score_end_list)

    def forward(self,
                raw_feature,
                gt_bbox=None,
                video_meta=None,
                return_loss=True):
        """Define the computation performed at every call."""
        if return_loss:
            label_confidence, label_start, label_end = (
                self.generate_labels(gt_bbox))
            device = raw_feature.device
            label_confidence = label_confidence.to(device)
            label_start = label_start.to(device)
            label_end = label_end.to(device)
            return self.forward_train(raw_feature, label_confidence,
                                      label_start, label_end)

        return self.forward_test(raw_feature, video_meta)

    @staticmethod
    def _get_interp1d_bin_mask(seg_tmin, seg_tmax, tscale, num_samples,
                               num_samples_per_bin):
        """Generate sample mask for a boundary-matching pair."""
        plen = float(seg_tmax - seg_tmin)
        plen_sample = plen / (num_samples * num_samples_per_bin - 1.0)
        total_samples = [
            seg_tmin + plen_sample * i
            for i in range(num_samples * num_samples_per_bin)
        ]
        p_mask = []
        for idx in range(num_samples):
            bin_samples = total_samples[idx * num_samples_per_bin:(idx + 1) *
                                        num_samples_per_bin]
            bin_vector = np.zeros(tscale)
            for sample in bin_samples:
                sample_upper = math.ceil(sample)
                sample_decimal, sample_down = math.modf(sample)
                if 0 <= int(sample_down) <= (tscale - 1):
                    bin_vector[int(sample_down)] += 1 - sample_decimal
                if 0 <= int(sample_upper) <= (tscale - 1):
                    bin_vector[int(sample_upper)] += sample_decimal
            bin_vector = 1.0 / num_samples_per_bin * bin_vector
            p_mask.append(bin_vector)
        p_mask = np.stack(p_mask, axis=1)
        return p_mask

    def _get_interp1d_mask(self):
        """Generate sample mask for each point in Boundary-Matching Map."""
        mask_mat = []
        for start_index in range(self.tscale):
            mask_mat_vector = []
            for duration_index in range(self.tscale):
                if start_index + duration_index < self.tscale:
                    p_tmin = start_index
                    p_tmax = start_index + duration_index
                    center_len = float(p_tmax - p_tmin) + 1
                    sample_tmin = p_tmin - (center_len * self.boundary_ratio)
                    sample_tmax = p_tmax + (center_len * self.boundary_ratio)
                    p_mask = self._get_interp1d_bin_mask(
                        sample_tmin, sample_tmax, self.tscale,
                        self.num_samples, self.num_samples_per_bin)
                else:
                    p_mask = np.zeros([self.tscale, self.num_samples])
                mask_mat_vector.append(p_mask)
            mask_mat_vector = np.stack(mask_mat_vector, axis=2)
            mask_mat.append(mask_mat_vector)
        mask_mat = np.stack(mask_mat, axis=3)
        mask_mat = mask_mat.astype(np.float32)
        self.sample_mask = nn.Parameter(
            torch.tensor(mask_mat).view(self.tscale, -1), requires_grad=False)

    def _get_bm_mask(self):
        """Generate Boundary-Matching Mask."""
        bm_mask = []
        for idx in range(self.tscale):
            mask_vector = [1] * (self.tscale - idx) + [0] * idx
            bm_mask.append(mask_vector)
        bm_mask = torch.tensor(bm_mask, dtype=torch.float)
        return bm_mask