bbox_head.py 10.8 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
import torch.nn.functional as F

from mmaction.core.bbox import bbox_target

try:
    from mmdet.models.builder import HEADS as MMDET_HEADS
    mmdet_imported = True
except (ImportError, ModuleNotFoundError):
    mmdet_imported = False

# Resolve cross-entropy function to support multi-target in Torch < 1.10
#   This is a very basic 'hack', with minimal functionality to support the
#   procedure under prior torch versions
from packaging import version as pv

if pv.parse(torch.__version__) < pv.parse('1.10'):

    def cross_entropy_loss(input, target, reduction='None'):
        input = input.log_softmax(dim=-1)  # Compute Log of Softmax
        loss = -(input * target).sum(dim=-1)  # Compute Loss manually
        if reduction.lower() == 'mean':
            return loss.mean()
        elif reduction.lower() == 'sum':
            return loss.sum()
        else:
            return loss
else:
    cross_entropy_loss = F.cross_entropy


class BBoxHeadAVA(nn.Module):
    """Simplest RoI head, with only two fc layers for classification and
    regression respectively.

    Args:
        temporal_pool_type (str): The temporal pool type. Choices are 'avg' or
            'max'. Default: 'avg'.
        spatial_pool_type (str): The spatial pool type. Choices are 'avg' or
            'max'. Default: 'max'.
        in_channels (int): The number of input channels. Default: 2048.
        focal_alpha (float): The hyper-parameter alpha for Focal Loss.
            When alpha == 1 and gamma == 0, Focal Loss degenerates to
            BCELossWithLogits. Default: 1.
        focal_gamma (float): The hyper-parameter gamma for Focal Loss.
            When alpha == 1 and gamma == 0, Focal Loss degenerates to
            BCELossWithLogits. Default: 0.
        num_classes (int): The number of classes. Default: 81.
        dropout_ratio (float): A float in [0, 1], indicates the dropout_ratio.
            Default: 0.
        dropout_before_pool (bool): Dropout Feature before spatial temporal
            pooling. Default: True.
        topk (int or tuple[int]): Parameter for evaluating Top-K accuracy.
            Default: (3, 5)
        multilabel (bool): Whether used for a multilabel task. Default: True.
    """

    def __init__(
            self,
            temporal_pool_type='avg',
            spatial_pool_type='max',
            in_channels=2048,
            focal_gamma=0.,
            focal_alpha=1.,
            num_classes=81,  # First class reserved (BBox as pos/neg)
            dropout_ratio=0,
            dropout_before_pool=True,
            topk=(3, 5),
            multilabel=True):

        super(BBoxHeadAVA, self).__init__()
        assert temporal_pool_type in ['max', 'avg']
        assert spatial_pool_type in ['max', 'avg']
        self.temporal_pool_type = temporal_pool_type
        self.spatial_pool_type = spatial_pool_type

        self.in_channels = in_channels
        self.num_classes = num_classes

        self.dropout_ratio = dropout_ratio
        self.dropout_before_pool = dropout_before_pool

        self.multilabel = multilabel

        self.focal_gamma = focal_gamma
        self.focal_alpha = focal_alpha

        if topk is None:
            self.topk = ()
        elif isinstance(topk, int):
            self.topk = (topk, )
        elif isinstance(topk, tuple):
            assert all([isinstance(k, int) for k in topk])
            self.topk = topk
        else:
            raise TypeError('topk should be int or tuple[int], '
                            f'but get {type(topk)}')
        # Class 0 is ignored when calculating accuracy,
        #      so topk cannot be equal to num_classes.
        assert all([k < num_classes for k in self.topk])

        in_channels = self.in_channels
        # Pool by default
        if self.temporal_pool_type == 'avg':
            self.temporal_pool = nn.AdaptiveAvgPool3d((1, None, None))
        else:
            self.temporal_pool = nn.AdaptiveMaxPool3d((1, None, None))
        if self.spatial_pool_type == 'avg':
            self.spatial_pool = nn.AdaptiveAvgPool3d((None, 1, 1))
        else:
            self.spatial_pool = nn.AdaptiveMaxPool3d((None, 1, 1))

        if dropout_ratio > 0:
            self.dropout = nn.Dropout(dropout_ratio)

        self.fc_cls = nn.Linear(in_channels, num_classes)
        self.debug_imgs = None

    def init_weights(self):
        nn.init.normal_(self.fc_cls.weight, 0, 0.01)
        nn.init.constant_(self.fc_cls.bias, 0)

    def forward(self, x):
        if self.dropout_before_pool and self.dropout_ratio > 0:
            x = self.dropout(x)

        x = self.temporal_pool(x)
        x = self.spatial_pool(x)

        if not self.dropout_before_pool and self.dropout_ratio > 0:
            x = self.dropout(x)

        x = x.view(x.size(0), -1)
        cls_score = self.fc_cls(x)
        # We do not predict bbox, so return None
        return cls_score, None

    @staticmethod
    def get_targets(sampling_results, gt_bboxes, gt_labels, rcnn_train_cfg):
        pos_proposals = [res.pos_bboxes for res in sampling_results]
        neg_proposals = [res.neg_bboxes for res in sampling_results]
        pos_gt_labels = [res.pos_gt_labels for res in sampling_results]
        cls_reg_targets = bbox_target(pos_proposals, neg_proposals,
                                      pos_gt_labels, rcnn_train_cfg)
        return cls_reg_targets

    @staticmethod
    def get_recall_prec(pred_vec, target_vec):
        """Computes the Recall/Precision for both multi-label and single label
        scenarios.

        Note that the computation calculates the micro average.

        Note, that in both cases, the concept of correct/incorrect is the same.
        Args:
            pred_vec (tensor[N x C]): each element is either 0 or 1
            target_vec (tensor[N x C]): each element is either 0 or 1 - for
                single label it is expected that only one element is on (1)
                although this is not enforced.
        """
        correct = pred_vec & target_vec
        recall = correct.sum(1) / target_vec.sum(1).float()  # Enforce Float
        prec = correct.sum(1) / (pred_vec.sum(1) + 1e-6)
        return recall.mean(), prec.mean()

    @staticmethod
    def topk_to_matrix(probs, k):
        """Converts top-k to binary matrix."""
        topk_labels = probs.topk(k, 1, True, True)[1]
        topk_matrix = probs.new_full(probs.size(), 0, dtype=torch.bool)
        for i in range(probs.shape[0]):
            topk_matrix[i, topk_labels[i]] = 1
        return topk_matrix

    def topk_accuracy(self, pred, target, thr=0.5):
        """Computes the Top-K Accuracies for both single and multi-label
        scenarios."""
        # Define Target vector:
        target_bool = target > 0.5

        # Branch on Multilabel for computing output classification
        if self.multilabel:
            pred = pred.sigmoid()
        else:
            pred = pred.softmax(dim=1)

        # Compute at threshold (K=1 for single)
        if self.multilabel:
            pred_bool = pred > thr
        else:
            pred_bool = self.topk_to_matrix(pred, 1)
        recall_thr, prec_thr = self.get_recall_prec(pred_bool, target_bool)

        # Compute at various K
        recalls_k, precs_k = [], []
        for k in self.topk:
            pred_bool = self.topk_to_matrix(pred, k)
            recall, prec = self.get_recall_prec(pred_bool, target_bool)
            recalls_k.append(recall)
            precs_k.append(prec)

        # Return all
        return recall_thr, prec_thr, recalls_k, precs_k

    def loss(self,
             cls_score,
             bbox_pred,
             rois,
             labels,
             label_weights,
             bbox_targets=None,
             bbox_weights=None,
             reduce=True):

        losses = dict()
        # Only use the cls_score
        if cls_score is not None:
            labels = labels[:, 1:]  # Get valid labels (ignore first one)
            pos_inds = torch.sum(labels, dim=-1) > 0
            cls_score = cls_score[pos_inds, 1:]
            labels = labels[pos_inds]

            # Compute First Recall/Precisions
            #   This has to be done first before normalising the label-space.
            recall_thr, prec_thr, recall_k, prec_k = self.topk_accuracy(
                cls_score, labels, thr=0.5)
            losses['recall@thr=0.5'] = recall_thr
            losses['prec@thr=0.5'] = prec_thr
            for i, k in enumerate(self.topk):
                losses[f'recall@top{k}'] = recall_k[i]
                losses[f'prec@top{k}'] = prec_k[i]

            # If Single-label, need to ensure that target labels sum to 1: ie
            #   that they are valid probabilities.
            if not self.multilabel:
                labels = labels / labels.sum(dim=1, keepdim=True)

            # Select Loss function based on single/multi-label
            #   NB. Both losses auto-compute sigmoid/softmax on prediction
            if self.multilabel:
                loss_func = F.binary_cross_entropy_with_logits
            else:
                loss_func = cross_entropy_loss

            # Compute loss
            loss = loss_func(cls_score, labels, reduction='none')
            pt = torch.exp(-loss)
            F_loss = self.focal_alpha * (1 - pt)**self.focal_gamma * loss
            losses['loss_action_cls'] = torch.mean(F_loss)

        return losses

    def get_det_bboxes(self,
                       rois,
                       cls_score,
                       img_shape,
                       flip=False,
                       crop_quadruple=None,
                       cfg=None):

        # might be used by testing w. augmentation
        if isinstance(cls_score, list):
            cls_score = sum(cls_score) / float(len(cls_score))

        # Handle Multi/Single Label
        if cls_score is not None:
            if self.multilabel:
                scores = cls_score.sigmoid()
            else:
                scores = cls_score.softmax(dim=-1)
        else:
            scores = None

        bboxes = rois[:, 1:]
        assert bboxes.shape[-1] == 4

        # First reverse the flip
        img_h, img_w = img_shape
        if flip:
            bboxes_ = bboxes.clone()
            bboxes_[:, 0] = img_w - 1 - bboxes[:, 2]
            bboxes_[:, 2] = img_w - 1 - bboxes[:, 0]
            bboxes = bboxes_

        # Then normalize the bbox to [0, 1]
        bboxes[:, 0::2] /= img_w
        bboxes[:, 1::2] /= img_h

        def _bbox_crop_undo(bboxes, crop_quadruple):
            decropped = bboxes.clone()

            if crop_quadruple is not None:
                x1, y1, tw, th = crop_quadruple
                decropped[:, 0::2] = bboxes[..., 0::2] * tw + x1
                decropped[:, 1::2] = bboxes[..., 1::2] * th + y1

            return decropped

        bboxes = _bbox_crop_undo(bboxes, crop_quadruple)
        return bboxes, scores


if mmdet_imported:
    MMDET_HEADS.register_module()(BBoxHeadAVA)