stgcn.py 9.88 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from mmcv.cnn import constant_init, kaiming_init, normal_init
from mmcv.runner import load_checkpoint
from mmcv.utils import _BatchNorm

from ...utils import get_root_logger
from ..builder import BACKBONES
from ..skeleton_gcn.utils import Graph


def zero(x):
    """return zero."""
    return 0


def identity(x):
    """return input itself."""
    return x


class STGCNBlock(nn.Module):
    """Applies a spatial temporal graph convolution over an input graph
    sequence.

    Args:
        in_channels (int): Number of channels in the input sequence data
        out_channels (int): Number of channels produced by the convolution
        kernel_size (tuple): Size of the temporal convolving kernel and
            graph convolving kernel
        stride (int, optional): Stride of the temporal convolution. Default: 1
        dropout (int, optional): Dropout rate of the final output. Default: 0
        residual (bool, optional): If ``True``, applies a residual mechanism.
            Default: ``True``

    Shape:
        - Input[0]: Input graph sequence in :math:`(N, in_channels, T_{in}, V)`
            format
        - Input[1]: Input graph adjacency matrix in :math:`(K, V, V)` format
        - Output[0]: Outpu graph sequence in :math:`(N, out_channels, T_{out},
            V)` format
        - Output[1]: Graph adjacency matrix for output data in :math:`(K, V,
            V)` format

        where
            :math:`N` is a batch size,
            :math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]
                `,
            :math:`T_{in}/T_{out}` is a length of input/output sequence,
            :math:`V` is the number of graph nodes.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 dropout=0,
                 residual=True):
        super().__init__()

        assert len(kernel_size) == 2
        assert kernel_size[0] % 2 == 1
        padding = ((kernel_size[0] - 1) // 2, 0)

        self.gcn = ConvTemporalGraphical(in_channels, out_channels,
                                         kernel_size[1])
        self.tcn = nn.Sequential(
            nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True),
            nn.Conv2d(out_channels, out_channels, (kernel_size[0], 1),
                      (stride, 1), padding), nn.BatchNorm2d(out_channels),
            nn.Dropout(dropout, inplace=True))

        if not residual:
            self.residual = zero

        elif (in_channels == out_channels) and (stride == 1):
            self.residual = identity

        else:
            self.residual = nn.Sequential(
                nn.Conv2d(
                    in_channels,
                    out_channels,
                    kernel_size=1,
                    stride=(stride, 1)), nn.BatchNorm2d(out_channels))

        self.relu = nn.ReLU(inplace=True)

    def forward(self, x, adj_mat):
        """Defines the computation performed at every call."""
        res = self.residual(x)
        x, adj_mat = self.gcn(x, adj_mat)
        x = self.tcn(x) + res

        return self.relu(x), adj_mat


class ConvTemporalGraphical(nn.Module):
    """The basic module for applying a graph convolution.

    Args:
        in_channels (int): Number of channels in the input sequence data
        out_channels (int): Number of channels produced by the convolution
        kernel_size (int): Size of the graph convolving kernel
        t_kernel_size (int): Size of the temporal convolving kernel
        t_stride (int, optional): Stride of the temporal convolution.
            Default: 1
        t_padding (int, optional): Temporal zero-padding added to both sides
            of the input. Default: 0
        t_dilation (int, optional): Spacing between temporal kernel elements.
            Default: 1
        bias (bool, optional): If ``True``, adds a learnable bias to the
            output. Default: ``True``

    Shape:
        - Input[0]: Input graph sequence in :math:`(N, in_channels, T_{in}, V)`
            format
        - Input[1]: Input graph adjacency matrix in :math:`(K, V, V)` format
        - Output[0]: Output graph sequence in :math:`(N, out_channels, T_{out}
            , V)` format
        - Output[1]: Graph adjacency matrix for output data in :math:`(K, V, V)
            ` format

        where
            :math:`N` is a batch size,
            :math:`K` is the spatial kernel size, as :math:`K == kernel_size[1]
                `,
            :math:`T_{in}/T_{out}` is a length of input/output sequence,
            :math:`V` is the number of graph nodes.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 t_kernel_size=1,
                 t_stride=1,
                 t_padding=0,
                 t_dilation=1,
                 bias=True):
        super().__init__()

        self.kernel_size = kernel_size
        self.conv = nn.Conv2d(
            in_channels,
            out_channels * kernel_size,
            kernel_size=(t_kernel_size, 1),
            padding=(t_padding, 0),
            stride=(t_stride, 1),
            dilation=(t_dilation, 1),
            bias=bias)

    def forward(self, x, adj_mat):
        """Defines the computation performed at every call."""
        assert adj_mat.size(0) == self.kernel_size

        x = self.conv(x)

        n, kc, t, v = x.size()
        x = x.view(n, self.kernel_size, kc // self.kernel_size, t, v)
        x = torch.einsum('nkctv,kvw->nctw', (x, adj_mat))

        return x.contiguous(), adj_mat


@BACKBONES.register_module()
class STGCN(nn.Module):
    """Backbone of Spatial temporal graph convolutional networks.

    Args:
        in_channels (int): Number of channels in the input data.
        graph_cfg (dict): The arguments for building the graph.
        edge_importance_weighting (bool): If ``True``, adds a learnable
            importance weighting to the edges of the graph. Default: True.
        data_bn (bool): If 'True', adds data normalization to the inputs.
            Default: True.
        pretrained (str | None): Name of pretrained model.
        **kwargs (optional): Other parameters for graph convolution units.

    Shape:
        - Input: :math:`(N, in_channels, T_{in}, V_{in}, M_{in})`
        - Output: :math:`(N, num_class)` where
            :math:`N` is a batch size,
            :math:`T_{in}` is a length of input sequence,
            :math:`V_{in}` is the number of graph nodes,
            :math:`M_{in}` is the number of instance in a frame.
    """

    def __init__(self,
                 in_channels,
                 graph_cfg,
                 edge_importance_weighting=True,
                 data_bn=True,
                 pretrained=None,
                 **kwargs):
        super().__init__()

        # load graph
        self.graph = Graph(**graph_cfg)
        A = torch.tensor(
            self.graph.A, dtype=torch.float32, requires_grad=False)
        self.register_buffer('A', A)

        # build networks
        spatial_kernel_size = A.size(0)
        temporal_kernel_size = 9
        kernel_size = (temporal_kernel_size, spatial_kernel_size)
        self.data_bn = nn.BatchNorm1d(in_channels *
                                      A.size(1)) if data_bn else identity

        kwargs0 = {k: v for k, v in kwargs.items() if k != 'dropout'}
        self.st_gcn_networks = nn.ModuleList((
            STGCNBlock(
                in_channels, 64, kernel_size, 1, residual=False, **kwargs0),
            STGCNBlock(64, 64, kernel_size, 1, **kwargs),
            STGCNBlock(64, 64, kernel_size, 1, **kwargs),
            STGCNBlock(64, 64, kernel_size, 1, **kwargs),
            STGCNBlock(64, 128, kernel_size, 2, **kwargs),
            STGCNBlock(128, 128, kernel_size, 1, **kwargs),
            STGCNBlock(128, 128, kernel_size, 1, **kwargs),
            STGCNBlock(128, 256, kernel_size, 2, **kwargs),
            STGCNBlock(256, 256, kernel_size, 1, **kwargs),
            STGCNBlock(256, 256, kernel_size, 1, **kwargs),
        ))

        # initialize parameters for edge importance weighting
        if edge_importance_weighting:
            self.edge_importance = nn.ParameterList([
                nn.Parameter(torch.ones(self.A.size()))
                for i in self.st_gcn_networks
            ])
        else:
            self.edge_importance = [1 for _ in self.st_gcn_networks]

        self.pretrained = pretrained

    def init_weights(self):
        """Initiate the parameters either from existing checkpoint or from
        scratch."""
        if isinstance(self.pretrained, str):
            logger = get_root_logger()
            logger.info(f'load model from: {self.pretrained}')

            load_checkpoint(self, self.pretrained, strict=False, logger=logger)

        elif self.pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, nn.Linear):
                    normal_init(m)
                elif isinstance(m, _BatchNorm):
                    constant_init(m, 1)
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        """Defines the computation performed at every call.
        Args:
            x (torch.Tensor): The input data.

        Returns:
            torch.Tensor: The output of the module.
        """
        # data normalization
        x = x.float()
        n, c, t, v, m = x.size()  # bs 3 300 25(17) 2
        x = x.permute(0, 4, 3, 1, 2).contiguous()  # N M V C T
        x = x.view(n * m, v * c, t)
        x = self.data_bn(x)
        x = x.view(n, m, v, c, t)
        x = x.permute(0, 1, 3, 4, 2).contiguous()
        x = x.view(n * m, c, t, v)  # bsx2 3 300 25(17)

        # forward
        for gcn, importance in zip(self.st_gcn_networks, self.edge_importance):
            x, _ = gcn(x, self.A * importance)

        return x