resnet3d.py 39.7 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import (ConvModule, NonLocal3d, build_activation_layer,
                      constant_init, kaiming_init)
from mmcv.runner import _load_checkpoint, load_checkpoint
from mmcv.utils import _BatchNorm
from torch.nn.modules.utils import _ntuple, _triple

from ...utils import get_root_logger
from ..builder import BACKBONES

try:
    from mmdet.models import BACKBONES as MMDET_BACKBONES
    from mmdet.models.builder import SHARED_HEADS as MMDET_SHARED_HEADS
    mmdet_imported = True
except (ImportError, ModuleNotFoundError):
    mmdet_imported = False


class BasicBlock3d(nn.Module):
    """BasicBlock 3d block for ResNet3D.

    Args:
        inplanes (int): Number of channels for the input in first conv3d layer.
        planes (int): Number of channels produced by some norm/conv3d layers.
        spatial_stride (int): Spatial stride in the conv3d layer. Default: 1.
        temporal_stride (int): Temporal stride in the conv3d layer. Default: 1.
        dilation (int): Spacing between kernel elements. Default: 1.
        downsample (nn.Module | None): Downsample layer. Default: None.
        style (str): ``pytorch`` or ``caffe``. If set to "pytorch", the
            stride-two layer is the 3x3 conv layer, otherwise the stride-two
            layer is the first 1x1 conv layer. Default: 'pytorch'.
        inflate (bool): Whether to inflate kernel. Default: True.
        non_local (bool): Determine whether to apply non-local module in this
            block. Default: False.
        non_local_cfg (dict): Config for non-local module. Default: ``dict()``.
        conv_cfg (dict): Config dict for convolution layer.
            Default: ``dict(type='Conv3d')``.
        norm_cfg (dict): Config for norm layers. required keys are ``type``,
            Default: ``dict(type='BN3d')``.
        act_cfg (dict): Config dict for activation layer.
            Default: ``dict(type='ReLU')``.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
    """
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 spatial_stride=1,
                 temporal_stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 inflate=True,
                 non_local=False,
                 non_local_cfg=dict(),
                 conv_cfg=dict(type='Conv3d'),
                 norm_cfg=dict(type='BN3d'),
                 act_cfg=dict(type='ReLU'),
                 with_cp=False,
                 **kwargs):
        super().__init__()
        assert style in ['pytorch', 'caffe']
        # make sure that only ``inflate_style`` is passed into kwargs
        assert set(kwargs).issubset(['inflate_style'])

        self.inplanes = inplanes
        self.planes = planes
        self.spatial_stride = spatial_stride
        self.temporal_stride = temporal_stride
        self.dilation = dilation
        self.style = style
        self.inflate = inflate
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.with_cp = with_cp
        self.non_local = non_local
        self.non_local_cfg = non_local_cfg

        self.conv1_stride_s = spatial_stride
        self.conv2_stride_s = 1
        self.conv1_stride_t = temporal_stride
        self.conv2_stride_t = 1

        if self.inflate:
            conv1_kernel_size = (3, 3, 3)
            conv1_padding = (1, dilation, dilation)
            conv2_kernel_size = (3, 3, 3)
            conv2_padding = (1, 1, 1)
        else:
            conv1_kernel_size = (1, 3, 3)
            conv1_padding = (0, dilation, dilation)
            conv2_kernel_size = (1, 3, 3)
            conv2_padding = (0, 1, 1)

        self.conv1 = ConvModule(
            inplanes,
            planes,
            conv1_kernel_size,
            stride=(self.conv1_stride_t, self.conv1_stride_s,
                    self.conv1_stride_s),
            padding=conv1_padding,
            dilation=(1, dilation, dilation),
            bias=False,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

        self.conv2 = ConvModule(
            planes,
            planes * self.expansion,
            conv2_kernel_size,
            stride=(self.conv2_stride_t, self.conv2_stride_s,
                    self.conv2_stride_s),
            padding=conv2_padding,
            bias=False,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=None)

        self.downsample = downsample
        self.relu = build_activation_layer(self.act_cfg)

        if self.non_local:
            self.non_local_block = NonLocal3d(self.conv2.norm.num_features,
                                              **self.non_local_cfg)

    def forward(self, x):
        """Defines the computation performed at every call."""

        def _inner_forward(x):
            """Forward wrapper for utilizing checkpoint."""
            identity = x

            out = self.conv1(x)
            out = self.conv2(out)

            if self.downsample is not None:
                identity = self.downsample(x)

            out = out + identity
            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)
        out = self.relu(out)

        if self.non_local:
            out = self.non_local_block(out)

        return out


class Bottleneck3d(nn.Module):
    """Bottleneck 3d block for ResNet3D.

    Args:
        inplanes (int): Number of channels for the input in first conv3d layer.
        planes (int): Number of channels produced by some norm/conv3d layers.
        spatial_stride (int): Spatial stride in the conv3d layer. Default: 1.
        temporal_stride (int): Temporal stride in the conv3d layer. Default: 1.
        dilation (int): Spacing between kernel elements. Default: 1.
        downsample (nn.Module | None): Downsample layer. Default: None.
        style (str): ``pytorch`` or ``caffe``. If set to "pytorch", the
            stride-two layer is the 3x3 conv layer, otherwise the stride-two
            layer is the first 1x1 conv layer. Default: 'pytorch'.
        inflate (bool): Whether to inflate kernel. Default: True.
        inflate_style (str): ``3x1x1`` or ``3x3x3``. which determines the
            kernel sizes and padding strides for conv1 and conv2 in each block.
            Default: '3x1x1'.
        non_local (bool): Determine whether to apply non-local module in this
            block. Default: False.
        non_local_cfg (dict): Config for non-local module. Default: ``dict()``.
        conv_cfg (dict): Config dict for convolution layer.
            Default: ``dict(type='Conv3d')``.
        norm_cfg (dict): Config for norm layers. required keys are ``type``,
            Default: ``dict(type='BN3d')``.
        act_cfg (dict): Config dict for activation layer.
            Default: ``dict(type='ReLU')``.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
    """
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 spatial_stride=1,
                 temporal_stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 inflate=True,
                 inflate_style='3x1x1',
                 non_local=False,
                 non_local_cfg=dict(),
                 conv_cfg=dict(type='Conv3d'),
                 norm_cfg=dict(type='BN3d'),
                 act_cfg=dict(type='ReLU'),
                 with_cp=False):
        super().__init__()
        assert style in ['pytorch', 'caffe']
        assert inflate_style in ['3x1x1', '3x3x3']

        self.inplanes = inplanes
        self.planes = planes
        self.spatial_stride = spatial_stride
        self.temporal_stride = temporal_stride
        self.dilation = dilation
        self.style = style
        self.inflate = inflate
        self.inflate_style = inflate_style
        self.norm_cfg = norm_cfg
        self.conv_cfg = conv_cfg
        self.act_cfg = act_cfg
        self.with_cp = with_cp
        self.non_local = non_local
        self.non_local_cfg = non_local_cfg

        if self.style == 'pytorch':
            self.conv1_stride_s = 1
            self.conv2_stride_s = spatial_stride
            self.conv1_stride_t = 1
            self.conv2_stride_t = temporal_stride
        else:
            self.conv1_stride_s = spatial_stride
            self.conv2_stride_s = 1
            self.conv1_stride_t = temporal_stride
            self.conv2_stride_t = 1

        if self.inflate:
            if inflate_style == '3x1x1':
                conv1_kernel_size = (3, 1, 1)
                conv1_padding = (1, 0, 0)
                conv2_kernel_size = (1, 3, 3)
                conv2_padding = (0, dilation, dilation)
            else:
                conv1_kernel_size = (1, 1, 1)
                conv1_padding = (0, 0, 0)
                conv2_kernel_size = (3, 3, 3)
                conv2_padding = (1, dilation, dilation)
        else:
            conv1_kernel_size = (1, 1, 1)
            conv1_padding = (0, 0, 0)
            conv2_kernel_size = (1, 3, 3)
            conv2_padding = (0, dilation, dilation)

        self.conv1 = ConvModule(
            inplanes,
            planes,
            conv1_kernel_size,
            stride=(self.conv1_stride_t, self.conv1_stride_s,
                    self.conv1_stride_s),
            padding=conv1_padding,
            bias=False,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

        self.conv2 = ConvModule(
            planes,
            planes,
            conv2_kernel_size,
            stride=(self.conv2_stride_t, self.conv2_stride_s,
                    self.conv2_stride_s),
            padding=conv2_padding,
            dilation=(1, dilation, dilation),
            bias=False,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

        self.conv3 = ConvModule(
            planes,
            planes * self.expansion,
            1,
            bias=False,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            # No activation in the third ConvModule for bottleneck
            act_cfg=None)

        self.downsample = downsample
        self.relu = build_activation_layer(self.act_cfg)

        if self.non_local:
            self.non_local_block = NonLocal3d(self.conv3.norm.num_features,
                                              **self.non_local_cfg)

    def forward(self, x):
        """Defines the computation performed at every call."""

        def _inner_forward(x):
            """Forward wrapper for utilizing checkpoint."""
            identity = x

            out = self.conv1(x)
            out = self.conv2(out)
            out = self.conv3(out)

            if self.downsample is not None:
                identity = self.downsample(x)

            out = out + identity
            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)
        out = self.relu(out)

        if self.non_local:
            out = self.non_local_block(out)

        return out


@BACKBONES.register_module()
class ResNet3d(nn.Module):
    """ResNet 3d backbone.

    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        pretrained (str | None): Name of pretrained model.
        stage_blocks (tuple | None): Set number of stages for each res layer.
            Default: None.
        pretrained2d (bool): Whether to load pretrained 2D model.
            Default: True.
        in_channels (int): Channel num of input features. Default: 3.
        base_channels (int): Channel num of stem output features. Default: 64.
        out_indices (Sequence[int]): Indices of output feature. Default: (3, ).
        num_stages (int): Resnet stages. Default: 4.
        spatial_strides (Sequence[int]):
            Spatial strides of residual blocks of each stage.
            Default: ``(1, 2, 2, 2)``.
        temporal_strides (Sequence[int]):
            Temporal strides of residual blocks of each stage.
            Default: ``(1, 1, 1, 1)``.
        dilations (Sequence[int]): Dilation of each stage.
            Default: ``(1, 1, 1, 1)``.
        conv1_kernel (Sequence[int]): Kernel size of the first conv layer.
            Default: ``(3, 7, 7)``.
        conv1_stride_s (int): Spatial stride of the first conv layer.
            Default: 2.
        conv1_stride_t (int): Temporal stride of the first conv layer.
            Default: 1.
        pool1_stride_s (int): Spatial stride of the first pooling layer.
            Default: 2.
        pool1_stride_t (int): Temporal stride of the first pooling layer.
            Default: 1.
        with_pool2 (bool): Whether to use pool2. Default: True.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer. Default: 'pytorch'.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters. Default: -1.
        inflate (Sequence[int]): Inflate Dims of each block.
            Default: (1, 1, 1, 1).
        inflate_style (str): ``3x1x1`` or ``3x3x3``. which determines the
            kernel sizes and padding strides for conv1 and conv2 in each block.
            Default: '3x1x1'.
        conv_cfg (dict): Config for conv layers. required keys are ``type``
            Default: ``dict(type='Conv3d')``.
        norm_cfg (dict): Config for norm layers. required keys are ``type`` and
            ``requires_grad``.
            Default: ``dict(type='BN3d', requires_grad=True)``.
        act_cfg (dict): Config dict for activation layer.
            Default: ``dict(type='ReLU', inplace=True)``.
        norm_eval (bool): Whether to set BN layers to eval mode, namely, freeze
            running stats (mean and var). Default: False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
        non_local (Sequence[int]): Determine whether to apply non-local module
            in the corresponding block of each stages. Default: (0, 0, 0, 0).
        non_local_cfg (dict): Config for non-local module. Default: ``dict()``.
        zero_init_residual (bool):
            Whether to use zero initialization for residual block,
            Default: True.
        kwargs (dict, optional): Key arguments for "make_res_layer".
    """

    arch_settings = {
        18: (BasicBlock3d, (2, 2, 2, 2)),
        34: (BasicBlock3d, (3, 4, 6, 3)),
        50: (Bottleneck3d, (3, 4, 6, 3)),
        101: (Bottleneck3d, (3, 4, 23, 3)),
        152: (Bottleneck3d, (3, 8, 36, 3))
    }

    def __init__(self,
                 depth,
                 pretrained,
                 stage_blocks=None,
                 pretrained2d=True,
                 in_channels=3,
                 num_stages=4,
                 base_channels=64,
                 out_indices=(3, ),
                 spatial_strides=(1, 2, 2, 2),
                 temporal_strides=(1, 1, 1, 1),
                 dilations=(1, 1, 1, 1),
                 conv1_kernel=(3, 7, 7),
                 conv1_stride_s=2,
                 conv1_stride_t=1,
                 pool1_stride_s=2,
                 pool1_stride_t=1,
                 with_pool1=True,
                 with_pool2=True,
                 style='pytorch',
                 frozen_stages=-1,
                 inflate=(1, 1, 1, 1),
                 inflate_style='3x1x1',
                 conv_cfg=dict(type='Conv3d'),
                 norm_cfg=dict(type='BN3d', requires_grad=True),
                 act_cfg=dict(type='ReLU', inplace=True),
                 norm_eval=False,
                 with_cp=False,
                 non_local=(0, 0, 0, 0),
                 non_local_cfg=dict(),
                 zero_init_residual=True,
                 **kwargs):
        super().__init__()
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for resnet')
        self.depth = depth
        self.pretrained = pretrained
        self.pretrained2d = pretrained2d
        self.in_channels = in_channels
        self.base_channels = base_channels
        self.num_stages = num_stages
        assert 1 <= num_stages <= 4
        self.stage_blocks = stage_blocks
        self.out_indices = out_indices
        assert max(out_indices) < num_stages
        self.spatial_strides = spatial_strides
        self.temporal_strides = temporal_strides
        self.dilations = dilations
        assert len(spatial_strides) == len(temporal_strides) == len(
            dilations) == num_stages
        if self.stage_blocks is not None:
            assert len(self.stage_blocks) == num_stages

        self.conv1_kernel = conv1_kernel
        self.conv1_stride_s = conv1_stride_s
        self.conv1_stride_t = conv1_stride_t
        self.pool1_stride_s = pool1_stride_s
        self.pool1_stride_t = pool1_stride_t
        self.with_pool1 = with_pool1
        self.with_pool2 = with_pool2
        self.style = style
        self.frozen_stages = frozen_stages
        self.stage_inflations = _ntuple(num_stages)(inflate)
        self.non_local_stages = _ntuple(num_stages)(non_local)
        self.inflate_style = inflate_style
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.zero_init_residual = zero_init_residual

        self.block, stage_blocks = self.arch_settings[depth]

        if self.stage_blocks is None:
            self.stage_blocks = stage_blocks[:num_stages]

        self.inplanes = self.base_channels

        self.non_local_cfg = non_local_cfg

        self._make_stem_layer()

        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
            spatial_stride = spatial_strides[i]
            temporal_stride = temporal_strides[i]
            dilation = dilations[i]
            planes = self.base_channels * 2**i
            res_layer = self.make_res_layer(
                self.block,
                self.inplanes,
                planes,
                num_blocks,
                spatial_stride=spatial_stride,
                temporal_stride=temporal_stride,
                dilation=dilation,
                style=self.style,
                norm_cfg=self.norm_cfg,
                conv_cfg=self.conv_cfg,
                act_cfg=self.act_cfg,
                non_local=self.non_local_stages[i],
                non_local_cfg=self.non_local_cfg,
                inflate=self.stage_inflations[i],
                inflate_style=self.inflate_style,
                with_cp=with_cp,
                **kwargs)
            self.inplanes = planes * self.block.expansion
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        self.feat_dim = self.block.expansion * self.base_channels * 2**(
            len(self.stage_blocks) - 1)

    @staticmethod
    def make_res_layer(block,
                       inplanes,
                       planes,
                       blocks,
                       spatial_stride=1,
                       temporal_stride=1,
                       dilation=1,
                       style='pytorch',
                       inflate=1,
                       inflate_style='3x1x1',
                       non_local=0,
                       non_local_cfg=dict(),
                       norm_cfg=None,
                       act_cfg=None,
                       conv_cfg=None,
                       with_cp=False,
                       **kwargs):
        """Build residual layer for ResNet3D.

        Args:
            block (nn.Module): Residual module to be built.
            inplanes (int): Number of channels for the input feature
                in each block.
            planes (int): Number of channels for the output feature
                in each block.
            blocks (int): Number of residual blocks.
            spatial_stride (int | Sequence[int]): Spatial strides in
                residual and conv layers. Default: 1.
            temporal_stride (int | Sequence[int]): Temporal strides in
                residual and conv layers. Default: 1.
            dilation (int): Spacing between kernel elements. Default: 1.
            style (str): ``pytorch`` or ``caffe``. If set to ``pytorch``,
                the stride-two layer is the 3x3 conv layer, otherwise
                the stride-two layer is the first 1x1 conv layer.
                Default: ``pytorch``.
            inflate (int | Sequence[int]): Determine whether to inflate
                for each block. Default: 1.
            inflate_style (str): ``3x1x1`` or ``3x3x3``. which determines
                the kernel sizes and padding strides for conv1 and conv2
                in each block. Default: '3x1x1'.
            non_local (int | Sequence[int]): Determine whether to apply
                non-local module in the corresponding block of each stages.
                Default: 0.
            non_local_cfg (dict): Config for non-local module.
                Default: ``dict()``.
            conv_cfg (dict | None): Config for norm layers. Default: None.
            norm_cfg (dict | None): Config for norm layers. Default: None.
            act_cfg (dict | None): Config for activate layers. Default: None.
            with_cp (bool | None): Use checkpoint or not. Using checkpoint
                will save some memory while slowing down the training speed.
                Default: False.

        Returns:
            nn.Module: A residual layer for the given config.
        """
        inflate = inflate if not isinstance(inflate,
                                            int) else (inflate, ) * blocks
        non_local = non_local if not isinstance(
            non_local, int) else (non_local, ) * blocks
        assert len(inflate) == blocks and len(non_local) == blocks
        downsample = None
        if spatial_stride != 1 or inplanes != planes * block.expansion:
            downsample = ConvModule(
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=(temporal_stride, spatial_stride, spatial_stride),
                bias=False,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                act_cfg=None)

        layers = []
        layers.append(
            block(
                inplanes,
                planes,
                spatial_stride=spatial_stride,
                temporal_stride=temporal_stride,
                dilation=dilation,
                downsample=downsample,
                style=style,
                inflate=(inflate[0] == 1),
                inflate_style=inflate_style,
                non_local=(non_local[0] == 1),
                non_local_cfg=non_local_cfg,
                norm_cfg=norm_cfg,
                conv_cfg=conv_cfg,
                act_cfg=act_cfg,
                with_cp=with_cp,
                **kwargs))
        inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(
                block(
                    inplanes,
                    planes,
                    spatial_stride=1,
                    temporal_stride=1,
                    dilation=dilation,
                    style=style,
                    inflate=(inflate[i] == 1),
                    inflate_style=inflate_style,
                    non_local=(non_local[i] == 1),
                    non_local_cfg=non_local_cfg,
                    norm_cfg=norm_cfg,
                    conv_cfg=conv_cfg,
                    act_cfg=act_cfg,
                    with_cp=with_cp,
                    **kwargs))

        return nn.Sequential(*layers)

    @staticmethod
    def _inflate_conv_params(conv3d, state_dict_2d, module_name_2d,
                             inflated_param_names):
        """Inflate a conv module from 2d to 3d.

        Args:
            conv3d (nn.Module): The destination conv3d module.
            state_dict_2d (OrderedDict): The state dict of pretrained 2d model.
            module_name_2d (str): The name of corresponding conv module in the
                2d model.
            inflated_param_names (list[str]): List of parameters that have been
                inflated.
        """
        weight_2d_name = module_name_2d + '.weight'

        conv2d_weight = state_dict_2d[weight_2d_name]
        kernel_t = conv3d.weight.data.shape[2]

        new_weight = conv2d_weight.data.unsqueeze(2).expand_as(
            conv3d.weight) / kernel_t
        conv3d.weight.data.copy_(new_weight)
        inflated_param_names.append(weight_2d_name)

        if getattr(conv3d, 'bias') is not None:
            bias_2d_name = module_name_2d + '.bias'
            conv3d.bias.data.copy_(state_dict_2d[bias_2d_name])
            inflated_param_names.append(bias_2d_name)

    @staticmethod
    def _inflate_bn_params(bn3d, state_dict_2d, module_name_2d,
                           inflated_param_names):
        """Inflate a norm module from 2d to 3d.

        Args:
            bn3d (nn.Module): The destination bn3d module.
            state_dict_2d (OrderedDict): The state dict of pretrained 2d model.
            module_name_2d (str): The name of corresponding bn module in the
                2d model.
            inflated_param_names (list[str]): List of parameters that have been
                inflated.
        """
        for param_name, param in bn3d.named_parameters():
            param_2d_name = f'{module_name_2d}.{param_name}'
            param_2d = state_dict_2d[param_2d_name]
            if param.data.shape != param_2d.shape:
                warnings.warn(f'The parameter of {module_name_2d} is not'
                              'loaded due to incompatible shapes. ')
                return

            param.data.copy_(param_2d)
            inflated_param_names.append(param_2d_name)

        for param_name, param in bn3d.named_buffers():
            param_2d_name = f'{module_name_2d}.{param_name}'
            # some buffers like num_batches_tracked may not exist in old
            # checkpoints
            if param_2d_name in state_dict_2d:
                param_2d = state_dict_2d[param_2d_name]
                param.data.copy_(param_2d)
                inflated_param_names.append(param_2d_name)

    @staticmethod
    def _inflate_weights(self, logger):
        """Inflate the resnet2d parameters to resnet3d.

        The differences between resnet3d and resnet2d mainly lie in an extra
        axis of conv kernel. To utilize the pretrained parameters in 2d model,
        the weight of conv2d models should be inflated to fit in the shapes of
        the 3d counterpart.

        Args:
            logger (logging.Logger): The logger used to print
                debugging information.
        """

        state_dict_r2d = _load_checkpoint(self.pretrained)
        if 'state_dict' in state_dict_r2d:
            state_dict_r2d = state_dict_r2d['state_dict']

        inflated_param_names = []
        for name, module in self.named_modules():
            if isinstance(module, ConvModule):
                # we use a ConvModule to wrap conv+bn+relu layers, thus the
                # name mapping is needed
                if 'downsample' in name:
                    # layer{X}.{Y}.downsample.conv->layer{X}.{Y}.downsample.0
                    original_conv_name = name + '.0'
                    # layer{X}.{Y}.downsample.bn->layer{X}.{Y}.downsample.1
                    original_bn_name = name + '.1'
                else:
                    # layer{X}.{Y}.conv{n}.conv->layer{X}.{Y}.conv{n}
                    original_conv_name = name
                    # layer{X}.{Y}.conv{n}.bn->layer{X}.{Y}.bn{n}
                    original_bn_name = name.replace('conv', 'bn')
                if original_conv_name + '.weight' not in state_dict_r2d:
                    logger.warning(f'Module not exist in the state_dict_r2d'
                                   f': {original_conv_name}')
                else:
                    shape_2d = state_dict_r2d[original_conv_name +
                                              '.weight'].shape
                    shape_3d = module.conv.weight.data.shape
                    if shape_2d != shape_3d[:2] + shape_3d[3:]:
                        logger.warning(f'Weight shape mismatch for '
                                       f': {original_conv_name} : '
                                       f'3d weight shape: {shape_3d}; '
                                       f'2d weight shape: {shape_2d}. ')
                    else:
                        self._inflate_conv_params(module.conv, state_dict_r2d,
                                                  original_conv_name,
                                                  inflated_param_names)

                if original_bn_name + '.weight' not in state_dict_r2d:
                    logger.warning(f'Module not exist in the state_dict_r2d'
                                   f': {original_bn_name}')
                else:
                    self._inflate_bn_params(module.bn, state_dict_r2d,
                                            original_bn_name,
                                            inflated_param_names)

        # check if any parameters in the 2d checkpoint are not loaded
        remaining_names = set(
            state_dict_r2d.keys()) - set(inflated_param_names)
        if remaining_names:
            logger.info(f'These parameters in the 2d checkpoint are not loaded'
                        f': {remaining_names}')

    def inflate_weights(self, logger):
        self._inflate_weights(self, logger)

    def _make_stem_layer(self):
        """Construct the stem layers consists of a conv+norm+act module and a
        pooling layer."""
        self.conv1 = ConvModule(
            self.in_channels,
            self.base_channels,
            kernel_size=self.conv1_kernel,
            stride=(self.conv1_stride_t, self.conv1_stride_s,
                    self.conv1_stride_s),
            padding=tuple([(k - 1) // 2 for k in _triple(self.conv1_kernel)]),
            bias=False,
            conv_cfg=self.conv_cfg,
            norm_cfg=self.norm_cfg,
            act_cfg=self.act_cfg)

        self.maxpool = nn.MaxPool3d(
            kernel_size=(1, 3, 3),
            stride=(self.pool1_stride_t, self.pool1_stride_s,
                    self.pool1_stride_s),
            padding=(0, 1, 1))

        self.pool2 = nn.MaxPool3d(kernel_size=(2, 1, 1), stride=(2, 1, 1))

    def _freeze_stages(self):
        """Prevent all the parameters from being optimized before
        ``self.frozen_stages``."""
        if self.frozen_stages >= 0:
            self.conv1.eval()
            for param in self.conv1.parameters():
                param.requires_grad = False

        for i in range(1, self.frozen_stages + 1):
            m = getattr(self, f'layer{i}')
            m.eval()
            for param in m.parameters():
                param.requires_grad = False

    @staticmethod
    def _init_weights(self, pretrained=None):
        """Initiate the parameters either from existing checkpoint or from
        scratch.

        Args:
            pretrained (str | None): The path of the pretrained weight. Will
                override the original `pretrained` if set. The arg is added to
                be compatible with mmdet. Default: None.
        """
        if pretrained:
            self.pretrained = pretrained
        if isinstance(self.pretrained, str):
            logger = get_root_logger()
            logger.info(f'load model from: {self.pretrained}')

            if self.pretrained2d:
                # Inflate 2D model into 3D model.
                self.inflate_weights(logger)

            else:
                # Directly load 3D model.
                load_checkpoint(
                    self, self.pretrained, strict=False, logger=logger)

        elif self.pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv3d):
                    kaiming_init(m)
                elif isinstance(m, _BatchNorm):
                    constant_init(m, 1)

            if self.zero_init_residual:
                for m in self.modules():
                    if isinstance(m, Bottleneck3d):
                        constant_init(m.conv3.bn, 0)
                    elif isinstance(m, BasicBlock3d):
                        constant_init(m.conv2.bn, 0)
        else:
            raise TypeError('pretrained must be a str or None')

    def init_weights(self, pretrained=None):
        self._init_weights(self, pretrained)

    def forward(self, x):
        """Defines the computation performed at every call.

        Args:
            x (torch.Tensor): The input data.

        Returns:
            torch.Tensor: The feature of the input
            samples extracted by the backbone.
        """
        x = self.conv1(x)
        if self.with_pool1:
            x = self.maxpool(x)
        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            if i == 0 and self.with_pool2:
                x = self.pool2(x)
            if i in self.out_indices:
                outs.append(x)
        if len(outs) == 1:
            return outs[0]

        return tuple(outs)

    def train(self, mode=True):
        """Set the optimization status when training."""
        super().train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                if isinstance(m, _BatchNorm):
                    m.eval()


@BACKBONES.register_module()
class ResNet3dLayer(nn.Module):
    """ResNet 3d Layer.

    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        pretrained (str | None): Name of pretrained model.
        pretrained2d (bool): Whether to load pretrained 2D model.
            Default: True.
        stage (int): The index of Resnet stage. Default: 3.
        base_channels (int): Channel num of stem output features. Default: 64.
        spatial_stride (int): The 1st res block's spatial stride. Default 2.
        temporal_stride (int): The 1st res block's temporal stride. Default 1.
        dilation (int): The dilation. Default: 1.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer. Default: 'pytorch'.
        all_frozen (bool): Frozen all modules in the layer. Default: False.
        inflate (int): Inflate Dims of each block. Default: 1.
        inflate_style (str): ``3x1x1`` or ``3x3x3``. which determines the
            kernel sizes and padding strides for conv1 and conv2 in each block.
            Default: '3x1x1'.
        conv_cfg (dict): Config for conv layers. required keys are ``type``
            Default: ``dict(type='Conv3d')``.
        norm_cfg (dict): Config for norm layers. required keys are ``type`` and
            ``requires_grad``.
            Default: ``dict(type='BN3d', requires_grad=True)``.
        act_cfg (dict): Config dict for activation layer.
            Default: ``dict(type='ReLU', inplace=True)``.
        norm_eval (bool): Whether to set BN layers to eval mode, namely, freeze
            running stats (mean and var). Default: False.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed. Default: False.
        zero_init_residual (bool):
            Whether to use zero initialization for residual block,
            Default: True.
        kwargs (dict, optional): Key arguments for "make_res_layer".
    """

    def __init__(self,
                 depth,
                 pretrained,
                 pretrained2d=True,
                 stage=3,
                 base_channels=64,
                 spatial_stride=2,
                 temporal_stride=1,
                 dilation=1,
                 style='pytorch',
                 all_frozen=False,
                 inflate=1,
                 inflate_style='3x1x1',
                 conv_cfg=dict(type='Conv3d'),
                 norm_cfg=dict(type='BN3d', requires_grad=True),
                 act_cfg=dict(type='ReLU', inplace=True),
                 norm_eval=False,
                 with_cp=False,
                 zero_init_residual=True,
                 **kwargs):

        super().__init__()
        self.arch_settings = ResNet3d.arch_settings
        assert depth in self.arch_settings

        self.make_res_layer = ResNet3d.make_res_layer
        self._inflate_conv_params = ResNet3d._inflate_conv_params
        self._inflate_bn_params = ResNet3d._inflate_bn_params
        self._inflate_weights = ResNet3d._inflate_weights
        self._init_weights = ResNet3d._init_weights

        self.depth = depth
        self.pretrained = pretrained
        self.pretrained2d = pretrained2d
        self.stage = stage
        # stage index is 0 based
        assert 0 <= stage <= 3
        self.base_channels = base_channels

        self.spatial_stride = spatial_stride
        self.temporal_stride = temporal_stride
        self.dilation = dilation

        self.style = style
        self.all_frozen = all_frozen

        self.stage_inflation = inflate
        self.inflate_style = inflate_style
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.zero_init_residual = zero_init_residual

        block, stage_blocks = self.arch_settings[depth]
        stage_block = stage_blocks[stage]
        planes = 64 * 2**stage
        inplanes = 64 * 2**(stage - 1) * block.expansion

        res_layer = self.make_res_layer(
            block,
            inplanes,
            planes,
            stage_block,
            spatial_stride=spatial_stride,
            temporal_stride=temporal_stride,
            dilation=dilation,
            style=self.style,
            norm_cfg=self.norm_cfg,
            conv_cfg=self.conv_cfg,
            act_cfg=self.act_cfg,
            inflate=self.stage_inflation,
            inflate_style=self.inflate_style,
            with_cp=with_cp,
            **kwargs)

        self.layer_name = f'layer{stage + 1}'
        self.add_module(self.layer_name, res_layer)

    def inflate_weights(self, logger):
        self._inflate_weights(self, logger)

    def _freeze_stages(self):
        """Prevent all the parameters from being optimized before
        ``self.frozen_stages``."""
        if self.all_frozen:
            layer = getattr(self, self.layer_name)
            layer.eval()
            for param in layer.parameters():
                param.requires_grad = False

    def init_weights(self, pretrained=None):
        self._init_weights(self, pretrained)

    def forward(self, x):
        """Defines the computation performed at every call.

        Args:
            x (torch.Tensor): The input data.

        Returns:
            torch.Tensor: The feature of the input
            samples extracted by the backbone.
        """
        res_layer = getattr(self, self.layer_name)
        out = res_layer(x)
        return out

    def train(self, mode=True):
        """Set the optimization status when training."""
        super().train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                if isinstance(m, _BatchNorm):
                    m.eval()


if mmdet_imported:
    MMDET_SHARED_HEADS.register_module()(ResNet3dLayer)
    MMDET_BACKBONES.register_module()(ResNet3d)