ssn_dataset.py 36.7 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import os.path as osp
import warnings
from collections import OrderedDict

import mmcv
import numpy as np
from torch.nn.modules.utils import _pair

from ..core import softmax
from ..localization import (eval_ap, load_localize_proposal_file,
                            perform_regression, temporal_iou, temporal_nms)
from ..utils import get_root_logger
from .base import BaseDataset
from .builder import DATASETS


class SSNInstance:
    """Proposal instance of SSN.

    Args:
        start_frame (int): Index of the proposal's start frame.
        end_frame (int): Index of the proposal's end frame.
        num_video_frames (int): Total frames of the video.
        label (int | None): The category label of the proposal. Default: None.
        best_iou (float): The highest IOU with the groundtruth instance.
            Default: 0.
        overlap_self (float): Percent of the proposal's own span contained
            in a groundtruth instance. Default: 0.
    """

    def __init__(self,
                 start_frame,
                 end_frame,
                 num_video_frames,
                 label=None,
                 best_iou=0,
                 overlap_self=0):
        self.start_frame = start_frame
        self.end_frame = min(end_frame, num_video_frames)
        self.num_video_frames = num_video_frames
        self.label = label if label is not None else -1
        self.coverage = (end_frame - start_frame) / num_video_frames
        self.best_iou = best_iou
        self.overlap_self = overlap_self
        self.loc_reg = None
        self.size_reg = None
        self.regression_targets = [0., 0.]

    def compute_regression_targets(self, gt_list):
        """Compute regression targets of positive proposals.

        Args:
            gt_list (list): The list of groundtruth instances.
        """
        # Find the groundtruth instance with the highest IOU.
        ious = [
            temporal_iou(self.start_frame, self.end_frame, gt.start_frame,
                         gt.end_frame) for gt in gt_list
        ]
        best_gt = gt_list[np.argmax(ious)]

        # interval: [start_frame, end_frame)
        proposal_center = (self.start_frame + self.end_frame - 1) / 2
        gt_center = (best_gt.start_frame + best_gt.end_frame - 1) / 2
        proposal_size = self.end_frame - self.start_frame
        gt_size = best_gt.end_frame - best_gt.start_frame

        # Get regression targets:
        # (1). Localization regression target:
        #     center shift proportional to the proposal duration
        # (2). Duration/Size regression target:
        #     logarithm of the groundtruth duration over proposal duration

        self.loc_reg = (gt_center - proposal_center) / proposal_size
        self.size_reg = np.log(gt_size / proposal_size)
        self.regression_targets = ([self.loc_reg, self.size_reg]
                                   if self.loc_reg is not None else [0., 0.])


@DATASETS.register_module()
class SSNDataset(BaseDataset):
    """Proposal frame dataset for Structured Segment Networks.

    Based on proposal information, the dataset loads raw frames and applies
    specified transforms to return a dict containing the frame tensors and
    other information.

    The ann_file is a text file with multiple lines and each
    video's information takes up several lines. This file can be a normalized
    file with percent or standard file with specific frame indexes. If the file
    is a normalized file, it will be converted into a standard file first.

    Template information of a video in a standard file:
    .. code-block:: txt
        # index
        video_id
        num_frames
        fps
        num_gts
        label, start_frame, end_frame
        label, start_frame, end_frame
        ...
        num_proposals
        label, best_iou, overlap_self, start_frame, end_frame
        label, best_iou, overlap_self, start_frame, end_frame
        ...

    Example of a standard annotation file:
    .. code-block:: txt
        # 0
        video_validation_0000202
        5666
        1
        3
        8 130 185
        8 832 1136
        8 1303 1381
        5
        8 0.0620 0.0620 790 5671
        8 0.1656 0.1656 790 2619
        8 0.0833 0.0833 3945 5671
        8 0.0960 0.0960 4173 5671
        8 0.0614 0.0614 3327 5671

    Args:
        ann_file (str): Path to the annotation file.
        pipeline (list[dict | callable]): A sequence of data transforms.
        train_cfg (dict): Config for training.
        test_cfg (dict): Config for testing.
        data_prefix (str): Path to a directory where videos are held.
        test_mode (bool): Store True when building test or validation dataset.
            Default: False.
        filename_tmpl (str): Template for each filename.
            Default: 'img_{:05}.jpg'.
        start_index (int): Specify a start index for frames in consideration of
            different filename format. Default: 1.
        modality (str): Modality of data. Support 'RGB', 'Flow'.
            Default: 'RGB'.
        video_centric (bool): Whether to sample proposals just from
            this video or sample proposals randomly from the entire dataset.
            Default: True.
        reg_normalize_constants (list): Regression target normalized constants,
            including mean and standard deviation of location and duration.
        body_segments (int): Number of segments in course period.
            Default: 5.
        aug_segments (list[int]): Number of segments in starting and
            ending period. Default: (2, 2).
        aug_ratio (int | float | tuple[int | float]): The ratio of the length
            of augmentation to that of the proposal. Default: (0.5, 0.5).
        clip_len (int): Frames of each sampled output clip.
            Default: 1.
        frame_interval (int): Temporal interval of adjacent sampled frames.
            Default: 1.
        filter_gt (bool): Whether to filter videos with no annotation
            during training. Default: True.
        use_regression (bool): Whether to perform regression. Default: True.
        verbose (bool): Whether to print full information or not.
            Default: False.
    """

    def __init__(self,
                 ann_file,
                 pipeline,
                 train_cfg,
                 test_cfg,
                 data_prefix,
                 test_mode=False,
                 filename_tmpl='img_{:05d}.jpg',
                 start_index=1,
                 modality='RGB',
                 video_centric=True,
                 reg_normalize_constants=None,
                 body_segments=5,
                 aug_segments=(2, 2),
                 aug_ratio=(0.5, 0.5),
                 clip_len=1,
                 frame_interval=1,
                 filter_gt=True,
                 use_regression=True,
                 verbose=False):
        self.logger = get_root_logger()
        super().__init__(
            ann_file,
            pipeline,
            data_prefix=data_prefix,
            test_mode=test_mode,
            start_index=start_index,
            modality=modality)
        self.train_cfg = train_cfg
        self.test_cfg = test_cfg
        self.assigner = train_cfg.ssn.assigner
        self.sampler = train_cfg.ssn.sampler
        self.evaluater = test_cfg.ssn.evaluater
        self.verbose = verbose
        self.filename_tmpl = filename_tmpl

        if filter_gt or not test_mode:
            valid_inds = [
                i for i, video_info in enumerate(self.video_infos)
                if len(video_info['gts']) > 0
            ]
        self.logger.info(f'{len(valid_inds)} out of {len(self.video_infos)} '
                         f'videos are valid.')
        self.video_infos = [self.video_infos[i] for i in valid_inds]

        # construct three pools:
        # 1. Positive(Foreground)
        # 2. Background
        # 3. Incomplete
        self.positive_pool = []
        self.background_pool = []
        self.incomplete_pool = []
        self.construct_proposal_pools()

        if reg_normalize_constants is None:
            self.reg_norm_consts = self._compute_reg_normalize_constants()
        else:
            self.reg_norm_consts = reg_normalize_constants
        self.video_centric = video_centric
        self.body_segments = body_segments
        self.aug_segments = aug_segments
        self.aug_ratio = _pair(aug_ratio)
        if not mmcv.is_tuple_of(self.aug_ratio, (int, float)):
            raise TypeError(f'aug_ratio should be int, float'
                            f'or tuple of int and float, '
                            f'but got {type(aug_ratio)}')
        assert len(self.aug_ratio) == 2

        total_ratio = (
            self.sampler.positive_ratio + self.sampler.background_ratio +
            self.sampler.incomplete_ratio)
        self.positive_per_video = int(
            self.sampler.num_per_video *
            (self.sampler.positive_ratio / total_ratio))
        self.background_per_video = int(
            self.sampler.num_per_video *
            (self.sampler.background_ratio / total_ratio))
        self.incomplete_per_video = (
            self.sampler.num_per_video - self.positive_per_video -
            self.background_per_video)

        self.test_interval = self.test_cfg.ssn.sampler.test_interval
        # number of consecutive frames
        self.clip_len = clip_len
        # number of steps (sparse sampling for efficiency of io)
        self.frame_interval = frame_interval

        # test mode or not
        self.filter_gt = filter_gt
        self.use_regression = use_regression
        self.test_mode = test_mode

        # yapf: disable
        if self.verbose:
            self.logger.info(f"""
            SSNDataset: proposal file {self.proposal_file} parsed.

            There are {len(self.positive_pool) + len(self.background_pool) +
                len(self.incomplete_pool)} usable proposals from {len(self.video_infos)} videos.
            {len(self.positive_pool)} positive proposals
            {len(self.incomplete_pool)} incomplete proposals
            {len(self.background_pool)} background proposals

            Sample config:
            FG/BG/INCOMP: {self.positive_per_video}/{self.background_per_video}/{self.incomplete_per_video}  # noqa:E501
            Video Centric: {self.video_centric}

            Regression Normalization Constants:
            Location: mean {self.reg_norm_consts[0][0]:.05f} std {self.reg_norm_consts[1][0]:.05f} # noqa: E501
            Duration: mean {self.reg_norm_consts[0][1]:.05f} std {self.reg_norm_consts[1][1]:.05f} # noqa: E501
            """)
        # yapf: enable
        else:
            self.logger.info(
                f'SSNDataset: proposal file {self.proposal_file} parsed.')

    def load_annotations(self):
        """Load annotation file to get video information."""
        video_infos = []
        if 'normalized_' in self.ann_file:
            self.proposal_file = self.ann_file.replace('normalized_', '')
            if not osp.exists(self.proposal_file):
                raise Exception(f'Please refer to `$MMACTION2/tools/data` to'
                                f'denormalize {self.ann_file}.')
        else:
            self.proposal_file = self.ann_file
        proposal_infos = load_localize_proposal_file(self.proposal_file)
        # proposal_info:[video_id, num_frames, gt_list, proposal_list]
        # gt_list member: [label, start_frame, end_frame]
        # proposal_list member: [label, best_iou, overlap_self,
        #                        start_frame, end_frame]
        for proposal_info in proposal_infos:
            if self.data_prefix is not None:
                frame_dir = osp.join(self.data_prefix, proposal_info[0])
            num_frames = int(proposal_info[1])
            # gts:start, end, num_frames, class_label, tIoU=1
            gts = []
            for x in proposal_info[2]:
                if int(x[2]) > int(x[1]) and int(x[1]) < num_frames:
                    ssn_instance = SSNInstance(
                        int(x[1]),
                        int(x[2]),
                        num_frames,
                        label=int(x[0]),
                        best_iou=1.0)
                    gts.append(ssn_instance)
            # proposals:start, end, num_frames, class_label
            # tIoU=best_iou, overlap_self
            proposals = []
            for x in proposal_info[3]:
                if int(x[4]) > int(x[3]) and int(x[3]) < num_frames:
                    ssn_instance = SSNInstance(
                        int(x[3]),
                        int(x[4]),
                        num_frames,
                        label=int(x[0]),
                        best_iou=float(x[1]),
                        overlap_self=float(x[2]))
                    proposals.append(ssn_instance)
            video_infos.append(
                dict(
                    frame_dir=frame_dir,
                    video_id=proposal_info[0],
                    total_frames=num_frames,
                    gts=gts,
                    proposals=proposals))
        return video_infos

    def results_to_detections(self, results, top_k=2000, **kwargs):
        """Convert prediction results into detections.

        Args:
            results (list): Prediction results.
            top_k (int): Number of top results. Default: 2000.

        Returns:
            list: Detection results.
        """
        num_classes = results[0]['activity_scores'].shape[1] - 1
        detections = [dict() for _ in range(num_classes)]

        for idx in range(len(self)):
            video_id = self.video_infos[idx]['video_id']
            relative_proposals = results[idx]['relative_proposal_list']
            if len(relative_proposals[0].shape) == 3:
                relative_proposals = np.squeeze(relative_proposals, 0)

            activity_scores = results[idx]['activity_scores']
            completeness_scores = results[idx]['completeness_scores']
            regression_scores = results[idx]['bbox_preds']
            if regression_scores is None:
                regression_scores = np.zeros(
                    (len(relative_proposals), num_classes, 2),
                    dtype=np.float32)
            regression_scores = regression_scores.reshape((-1, num_classes, 2))

            if top_k <= 0:
                combined_scores = (
                    softmax(activity_scores[:, 1:], dim=1) *
                    np.exp(completeness_scores))
                for i in range(num_classes):
                    center_scores = regression_scores[:, i, 0][:, None]
                    duration_scores = regression_scores[:, i, 1][:, None]
                    detections[i][video_id] = np.concatenate(
                        (relative_proposals, combined_scores[:, i][:, None],
                         center_scores, duration_scores),
                        axis=1)
            else:
                combined_scores = (
                    softmax(activity_scores[:, 1:], dim=1) *
                    np.exp(completeness_scores))
                keep_idx = np.argsort(combined_scores.ravel())[-top_k:]
                for k in keep_idx:
                    class_idx = k % num_classes
                    proposal_idx = k // num_classes
                    new_item = [
                        relative_proposals[proposal_idx, 0],
                        relative_proposals[proposal_idx,
                                           1], combined_scores[proposal_idx,
                                                               class_idx],
                        regression_scores[proposal_idx, class_idx,
                                          0], regression_scores[proposal_idx,
                                                                class_idx, 1]
                    ]
                    if video_id not in detections[class_idx]:
                        detections[class_idx][video_id] = np.array([new_item])
                    else:
                        detections[class_idx][video_id] = np.vstack(
                            [detections[class_idx][video_id], new_item])

        return detections

    def evaluate(self,
                 results,
                 metrics='mAP',
                 metric_options=dict(mAP=dict(eval_dataset='thumos14')),
                 logger=None,
                 **deprecated_kwargs):
        """Evaluation in SSN proposal dataset.

        Args:
            results (list[dict]): Output results.
            metrics (str | sequence[str]): Metrics to be performed.
                Defaults: 'mAP'.
            metric_options (dict): Dict for metric options. Options are
                ``eval_dataset`` for ``mAP``.
                Default: ``dict(mAP=dict(eval_dataset='thumos14'))``.
            logger (logging.Logger | None): Logger for recording.
                Default: None.
            deprecated_kwargs (dict): Used for containing deprecated arguments.
                See 'https://github.com/open-mmlab/mmaction2/pull/286'.

        Returns:
            dict: Evaluation results for evaluation metrics.
        """
        # Protect ``metric_options`` since it uses mutable value as default
        metric_options = copy.deepcopy(metric_options)

        if deprecated_kwargs != {}:
            warnings.warn(
                'Option arguments for metrics has been changed to '
                "`metric_options`, See 'https://github.com/open-mmlab/mmaction2/pull/286' "  # noqa: E501
                'for more details')
            metric_options['mAP'] = dict(metric_options['mAP'],
                                         **deprecated_kwargs)

        if not isinstance(results, list):
            raise TypeError(f'results must be a list, but got {type(results)}')
        assert len(results) == len(self), (
            f'The length of results is not equal to the dataset len: '
            f'{len(results)} != {len(self)}')

        metrics = metrics if isinstance(metrics, (list, tuple)) else [metrics]
        allowed_metrics = ['mAP']
        for metric in metrics:
            if metric not in allowed_metrics:
                raise KeyError(f'metric {metric} is not supported')

        detections = self.results_to_detections(results, **self.evaluater)

        if self.use_regression:
            self.logger.info('Performing location regression')
            for class_idx, _ in enumerate(detections):
                detections[class_idx] = {
                    k: perform_regression(v)
                    for k, v in detections[class_idx].items()
                }
            self.logger.info('Regression finished')

        self.logger.info('Performing NMS')
        for class_idx, _ in enumerate(detections):
            detections[class_idx] = {
                k: temporal_nms(v, self.evaluater.nms)
                for k, v in detections[class_idx].items()
            }
        self.logger.info('NMS finished')

        # get gts
        all_gts = self.get_all_gts()
        for class_idx, _ in enumerate(detections):
            if class_idx not in all_gts:
                all_gts[class_idx] = dict()

        # get predictions
        plain_detections = {}
        for class_idx, _ in enumerate(detections):
            detection_list = []
            for video, dets in detections[class_idx].items():
                detection_list.extend([[video, class_idx] + x[:3]
                                       for x in dets.tolist()])
            plain_detections[class_idx] = detection_list

        eval_results = OrderedDict()
        for metric in metrics:
            if metric == 'mAP':
                eval_dataset = metric_options.setdefault('mAP', {}).setdefault(
                    'eval_dataset', 'thumos14')
                if eval_dataset == 'thumos14':
                    iou_range = np.arange(0.1, 1.0, .1)
                    ap_values = eval_ap(plain_detections, all_gts, iou_range)
                    map_ious = ap_values.mean(axis=0)
                    self.logger.info('Evaluation finished')

                    for iou, map_iou in zip(iou_range, map_ious):
                        eval_results[f'mAP@{iou:.02f}'] = map_iou

        return eval_results

    def construct_proposal_pools(self):
        """Construct positive proposal pool, incomplete proposal pool and
        background proposal pool of the entire dataset."""
        for video_info in self.video_infos:
            positives = self.get_positives(
                video_info['gts'], video_info['proposals'],
                self.assigner.positive_iou_threshold,
                self.sampler.add_gt_as_proposals)
            self.positive_pool.extend([(video_info['video_id'], proposal)
                                       for proposal in positives])

            incompletes, backgrounds = self.get_negatives(
                video_info['proposals'],
                self.assigner.incomplete_iou_threshold,
                self.assigner.background_iou_threshold,
                self.assigner.background_coverage_threshold,
                self.assigner.incomplete_overlap_threshold)
            self.incomplete_pool.extend([(video_info['video_id'], proposal)
                                         for proposal in incompletes])
            self.background_pool.extend([video_info['video_id'], proposal]
                                        for proposal in backgrounds)

    def get_all_gts(self):
        """Fetch groundtruth instances of the entire dataset."""
        gts = {}
        for video_info in self.video_infos:
            video = video_info['video_id']
            for gt in video_info['gts']:
                class_idx = gt.label - 1
                # gt_info: [relative_start, relative_end]
                gt_info = [
                    gt.start_frame / video_info['total_frames'],
                    gt.end_frame / video_info['total_frames']
                ]
                gts.setdefault(class_idx, {}).setdefault(video,
                                                         []).append(gt_info)

        return gts

    @staticmethod
    def get_positives(gts, proposals, positive_threshold, with_gt=True):
        """Get positive/foreground proposals.

        Args:
            gts (list): List of groundtruth instances(:obj:`SSNInstance`).
            proposals (list): List of proposal instances(:obj:`SSNInstance`).
            positive_threshold (float): Minimum threshold of overlap of
                positive/foreground proposals and groundtruths.
            with_gt (bool): Whether to include groundtruth instances in
                positive proposals. Default: True.

        Returns:
            list[:obj:`SSNInstance`]: (positives), positives is a list
                comprised of positive proposal instances.
        """
        positives = [
            proposal for proposal in proposals
            if proposal.best_iou > positive_threshold
        ]

        if with_gt:
            positives.extend(gts)

        for proposal in positives:
            proposal.compute_regression_targets(gts)

        return positives

    @staticmethod
    def get_negatives(proposals,
                      incomplete_iou_threshold,
                      background_iou_threshold,
                      background_coverage_threshold=0.01,
                      incomplete_overlap_threshold=0.7):
        """Get negative proposals, including incomplete proposals and
        background proposals.

        Args:
            proposals (list): List of proposal instances(:obj:`SSNInstance`).
            incomplete_iou_threshold (float): Maximum threshold of overlap
                of incomplete proposals and groundtruths.
            background_iou_threshold (float): Maximum threshold of overlap
                of background proposals and groundtruths.
            background_coverage_threshold (float): Minimum coverage
                of background proposals in video duration. Default: 0.01.
            incomplete_overlap_threshold (float): Minimum percent of incomplete
                proposals' own span contained in a groundtruth instance.
                Default: 0.7.

        Returns:
            list[:obj:`SSNInstance`]: (incompletes, backgrounds), incompletes
                and backgrounds are lists comprised of incomplete
                proposal instances and background proposal instances.
        """
        incompletes = []
        backgrounds = []

        for proposal in proposals:
            if (proposal.best_iou < incomplete_iou_threshold
                    and proposal.overlap_self > incomplete_overlap_threshold):
                incompletes.append(proposal)
            elif (proposal.best_iou < background_iou_threshold
                  and proposal.coverage > background_coverage_threshold):
                backgrounds.append(proposal)

        return incompletes, backgrounds

    def _video_centric_sampling(self, record):
        """Sample proposals from the this video instance.

        Args:
            record (dict): Information of the video instance(video_info[idx]).
                key: frame_dir, video_id, total_frames,
                gts: List of groundtruth instances(:obj:`SSNInstance`).
                proposals: List of proposal instances(:obj:`SSNInstance`).
        """
        positives = self.get_positives(record['gts'], record['proposals'],
                                       self.assigner.positive_iou_threshold,
                                       self.sampler.add_gt_as_proposals)
        incompletes, backgrounds = self.get_negatives(
            record['proposals'], self.assigner.incomplete_iou_threshold,
            self.assigner.background_iou_threshold,
            self.assigner.background_coverage_threshold,
            self.assigner.incomplete_overlap_threshold)

        def sample_video_proposals(proposal_type, video_id, video_pool,
                                   num_requested_proposals, dataset_pool):
            """This method will sample proposals from the this video pool. If
            the video pool is empty, it will fetch from the dataset pool
            (collect proposal of the entire dataset).

            Args:
                proposal_type (int): Type id of proposal.
                    Positive/Foreground: 0
                    Negative:
                        Incomplete: 1
                        Background: 2
                video_id (str): Name of the video.
                video_pool (list): Pool comprised of proposals in this video.
                num_requested_proposals (int): Number of proposals
                    to be sampled.
                dataset_pool (list): Proposals of the entire dataset.

            Returns:
                list[(str, :obj:`SSNInstance`), int]:
                    video_id (str): Name of the video.
                    :obj:`SSNInstance`: Instance of class SSNInstance.
                    proposal_type (int): Type of proposal.
            """

            if len(video_pool) == 0:
                idx = np.random.choice(
                    len(dataset_pool), num_requested_proposals, replace=False)
                return [(dataset_pool[x], proposal_type) for x in idx]

            replicate = len(video_pool) < num_requested_proposals
            idx = np.random.choice(
                len(video_pool), num_requested_proposals, replace=replicate)
            return [((video_id, video_pool[x]), proposal_type) for x in idx]

        out_proposals = []
        out_proposals.extend(
            sample_video_proposals(0, record['video_id'], positives,
                                   self.positive_per_video,
                                   self.positive_pool))
        out_proposals.extend(
            sample_video_proposals(1, record['video_id'], incompletes,
                                   self.incomplete_per_video,
                                   self.incomplete_pool))
        out_proposals.extend(
            sample_video_proposals(2, record['video_id'], backgrounds,
                                   self.background_per_video,
                                   self.background_pool))

        return out_proposals

    def _random_sampling(self):
        """Randomly sample proposals from the entire dataset."""
        out_proposals = []

        positive_idx = np.random.choice(
            len(self.positive_pool),
            self.positive_per_video,
            replace=len(self.positive_pool) < self.positive_per_video)
        out_proposals.extend([(self.positive_pool[x], 0)
                              for x in positive_idx])
        incomplete_idx = np.random.choice(
            len(self.incomplete_pool),
            self.incomplete_per_video,
            replace=len(self.incomplete_pool) < self.incomplete_per_video)
        out_proposals.extend([(self.incomplete_pool[x], 1)
                              for x in incomplete_idx])
        background_idx = np.random.choice(
            len(self.background_pool),
            self.background_per_video,
            replace=len(self.background_pool) < self.background_per_video)
        out_proposals.extend([(self.background_pool[x], 2)
                              for x in background_idx])

        return out_proposals

    def _get_stage(self, proposal, num_frames):
        """Fetch the scale factor of starting and ending stage and get the
        stage split.

        Args:
            proposal (:obj:`SSNInstance`): Proposal instance.
            num_frames (int): Total frames of the video.

        Returns:
            tuple[float, float, list]: (starting_scale_factor,
                ending_scale_factor, stage_split), starting_scale_factor is
                the ratio of the effective sampling length to augment length
                in starting stage, ending_scale_factor is the ratio of the
                effective sampling length to augment length in ending stage,
                stage_split is  ending segment id of starting, course and
                ending stage.
        """
        # proposal interval: [start_frame, end_frame)
        start_frame = proposal.start_frame
        end_frame = proposal.end_frame
        ori_clip_len = self.clip_len * self.frame_interval

        duration = end_frame - start_frame
        assert duration != 0

        valid_starting = max(0,
                             start_frame - int(duration * self.aug_ratio[0]))
        valid_ending = min(num_frames - ori_clip_len + 1,
                           end_frame - 1 + int(duration * self.aug_ratio[1]))

        valid_starting_length = start_frame - valid_starting - ori_clip_len
        valid_ending_length = (valid_ending - end_frame + 1) - ori_clip_len

        starting_scale_factor = ((valid_starting_length + ori_clip_len + 1) /
                                 (duration * self.aug_ratio[0]))
        ending_scale_factor = (valid_ending_length + ori_clip_len + 1) / (
            duration * self.aug_ratio[1])

        aug_start, aug_end = self.aug_segments
        stage_split = [
            aug_start, aug_start + self.body_segments,
            aug_start + self.body_segments + aug_end
        ]

        return starting_scale_factor, ending_scale_factor, stage_split

    def _compute_reg_normalize_constants(self):
        """Compute regression target normalized constants."""
        if self.verbose:
            self.logger.info('Compute regression target normalized constants')
        targets = []
        for video_info in self.video_infos:
            positives = self.get_positives(
                video_info['gts'], video_info['proposals'],
                self.assigner.positive_iou_threshold, False)
            for positive in positives:
                targets.append(list(positive.regression_targets))

        return np.array((np.mean(targets, axis=0), np.std(targets, axis=0)))

    def prepare_train_frames(self, idx):
        """Prepare the frames for training given the index."""
        results = copy.deepcopy(self.video_infos[idx])
        results['filename_tmpl'] = self.filename_tmpl
        results['modality'] = self.modality
        results['start_index'] = self.start_index

        if self.video_centric:
            # yapf: disable
            results['out_proposals'] = self._video_centric_sampling(self.video_infos[idx])  # noqa: E501
            # yapf: enable
        else:
            results['out_proposals'] = self._random_sampling()

        out_proposal_scale_factor = []
        out_proposal_type = []
        out_proposal_labels = []
        out_proposal_reg_targets = []

        for _, proposal in enumerate(results['out_proposals']):
            # proposal: [(video_id, SSNInstance), proposal_type]
            num_frames = proposal[0][1].num_video_frames

            (starting_scale_factor, ending_scale_factor,
             _) = self._get_stage(proposal[0][1], num_frames)

            # proposal[1]: Type id of proposal.
            # Positive/Foreground: 0
            # Negative:
            #   Incomplete: 1
            #   Background: 2

            # Positivte/Foreground proposal
            if proposal[1] == 0:
                label = proposal[0][1].label
            # Incomplete proposal
            elif proposal[1] == 1:
                label = proposal[0][1].label
            # Background proposal
            elif proposal[1] == 2:
                label = 0
            else:
                raise ValueError(f'Proposal type should be 0, 1, or 2,'
                                 f'but got {proposal[1]}')
            out_proposal_scale_factor.append(
                [starting_scale_factor, ending_scale_factor])
            if not isinstance(label, int):
                raise TypeError(f'proposal_label must be an int,'
                                f'but got {type(label)}')
            out_proposal_labels.append(label)
            out_proposal_type.append(proposal[1])

            reg_targets = proposal[0][1].regression_targets
            if proposal[1] == 0:
                # Normalize regression targets of positive proposals.
                reg_targets = ((reg_targets[0] - self.reg_norm_consts[0][0]) /
                               self.reg_norm_consts[1][0],
                               (reg_targets[1] - self.reg_norm_consts[0][1]) /
                               self.reg_norm_consts[1][1])
            out_proposal_reg_targets.append(reg_targets)

        results['reg_targets'] = np.array(
            out_proposal_reg_targets, dtype=np.float32)
        results['proposal_scale_factor'] = np.array(
            out_proposal_scale_factor, dtype=np.float32)
        results['proposal_labels'] = np.array(out_proposal_labels)
        results['proposal_type'] = np.array(out_proposal_type)

        return self.pipeline(results)

    def prepare_test_frames(self, idx):
        """Prepare the frames for testing given the index."""
        results = copy.deepcopy(self.video_infos[idx])
        results['filename_tmpl'] = self.filename_tmpl
        results['modality'] = self.modality
        results['start_index'] = self.start_index

        proposals = results['proposals']
        num_frames = results['total_frames']
        ori_clip_len = self.clip_len * self.frame_interval
        frame_ticks = np.arange(
            0, num_frames - ori_clip_len, self.test_interval, dtype=int) + 1

        num_sampled_frames = len(frame_ticks)

        if len(proposals) == 0:
            proposals.append(SSNInstance(0, num_frames - 1, num_frames))

        relative_proposal_list = []
        proposal_tick_list = []
        scale_factor_list = []

        for proposal in proposals:
            relative_proposal = (proposal.start_frame / num_frames,
                                 proposal.end_frame / num_frames)
            relative_duration = relative_proposal[1] - relative_proposal[0]
            relative_starting_duration = relative_duration * self.aug_ratio[0]
            relative_ending_duration = relative_duration * self.aug_ratio[1]
            relative_starting = (
                relative_proposal[0] - relative_starting_duration)
            relative_ending = relative_proposal[1] + relative_ending_duration

            real_relative_starting = max(0.0, relative_starting)
            real_relative_ending = min(1.0, relative_ending)

            starting_scale_factor = (
                (relative_proposal[0] - real_relative_starting) /
                relative_starting_duration)
            ending_scale_factor = (
                (real_relative_ending - relative_proposal[1]) /
                relative_ending_duration)

            proposal_ranges = (real_relative_starting, *relative_proposal,
                               real_relative_ending)
            proposal_ticks = (np.array(proposal_ranges) *
                              num_sampled_frames).astype(np.int32)

            relative_proposal_list.append(relative_proposal)
            proposal_tick_list.append(proposal_ticks)
            scale_factor_list.append(
                (starting_scale_factor, ending_scale_factor))

        results['relative_proposal_list'] = np.array(
            relative_proposal_list, dtype=np.float32)
        results['scale_factor_list'] = np.array(
            scale_factor_list, dtype=np.float32)
        results['proposal_tick_list'] = np.array(
            proposal_tick_list, dtype=np.int32)
        results['reg_norm_consts'] = self.reg_norm_consts

        return self.pipeline(results)